Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2018_18_1_a2, author = {A. N. Kirillov and R. V. Alkin}, title = {Stability of periodic billiard trajectories in triangle}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {25--39}, publisher = {mathdoc}, volume = {18}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a2/} }
TY - JOUR AU - A. N. Kirillov AU - R. V. Alkin TI - Stability of periodic billiard trajectories in triangle JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2018 SP - 25 EP - 39 VL - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a2/ LA - ru ID - ISU_2018_18_1_a2 ER -
%0 Journal Article %A A. N. Kirillov %A R. V. Alkin %T Stability of periodic billiard trajectories in triangle %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2018 %P 25-39 %V 18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a2/ %G ru %F ISU_2018_18_1_a2
A. N. Kirillov; R. V. Alkin. Stability of periodic billiard trajectories in triangle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 18 (2018) no. 1, pp. 25-39. http://geodesic.mathdoc.fr/item/ISU_2018_18_1_a2/
[1] Cornfeld I. P., Fomin S. V., Sinai Y. G., Ergodic Theory, Springer-Verlag, New York, 1982, 491 pp. | DOI | MR
[2] Rademacher H., Toeplitz O., Von Zahlen und Figuren, Springer-Verlag, Berlin, 1933, 173 pp.
[3] Rubinstein A. I., Telyakovskii D. S., “Zamechania o zadache Faniano”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 14:4-1 (2014), 382–387 (in Russian)
[4] Vorobets Ya. B., Gal'perin G. A., Stepin A. M., “Periodic billiard trajectories in polygons : generating mechanisms”, Russian Math. Surveys, 47:3 (1992), 5–80 | DOI | MR
[5] Schwartz R. E., “Obtuse Triangular Billiards II : One Hundred Degrees Worth of Periodic Trajectories”, Experimental Math., 18:2 (2008), 137–171 | DOI | MR
[6] Kozlov V. V., “Problem of stability of two-link trajectories in a multidimensional Birkhoff billiard”, Proc. Steklov Inst. Math., 273 (2011), 196–213 | DOI | MR
[7] Markeev A. P., “On the stability of the two-link trajectory of the parabolic Birkhoff billiards”, Rus. J. Nonlin. Dyn., 12:1 (2016), 75–90 | DOI | MR
[8] Kravsov V. M., Kalakova G. K., Geometry of billiard trajectories in polygons, EVRASIA, Saint-Petersburg, 2013, 304 pp. (in Russian)