Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_4_a5, author = {A. A. Gudkov and S. V. Mironov and A. R. Faizliev}, title = {On the convergence of a greedy algorithm for the solution of the problem for the construction of monotone regression}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {431--440}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a5/} }
TY - JOUR AU - A. A. Gudkov AU - S. V. Mironov AU - A. R. Faizliev TI - On the convergence of a greedy algorithm for the solution of the problem for the construction of monotone regression JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 431 EP - 440 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a5/ LA - ru ID - ISU_2017_17_4_a5 ER -
%0 Journal Article %A A. A. Gudkov %A S. V. Mironov %A A. R. Faizliev %T On the convergence of a greedy algorithm for the solution of the problem for the construction of monotone regression %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 431-440 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a5/ %G ru %F ISU_2017_17_4_a5
A. A. Gudkov; S. V. Mironov; A. R. Faizliev. On the convergence of a greedy algorithm for the solution of the problem for the construction of monotone regression. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 4, pp. 431-440. http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a5/
[1] Chen Y., Aspects of Shape-constrained Estimation in Statistics, PhD Thesis, University of Cambridge, 2013, 143 pp. | MR
[2] Robertson T., Wright F., Dykstra R., Order Restricted Statistical Inference, John Wiley Sons, N. Y., 1988, 544 pp. | MR | Zbl
[3] Barlow R., Brunk H., “The Isotonic Regression Problem and Its Dual”, Journal of the American Statistical Association, 67:1 (1972), 140–147 | DOI | MR | Zbl
[4] Dykstra R., “An Isotonic Regression Algorithm”, Journal of Statistical Planning and Inference, 5:1 (1981), 355–363 | DOI | MR | Zbl
[5] Best M. J., Chakravarti N., “Active set algorithms for isotonic regression: a unifying framework”, Math. Program., 47:3 (1990), 425–439 | DOI | MR | Zbl
[6] Best M., Chakravarti N., Ubhaya V., “Minimizing Separable Convex Functions Subject to Simple Chain Constraints”, SIAM Journal on Optimization, 10:3 (2000), 658–672 | DOI | MR | Zbl
[7] Stromberg U., “An Algorithm for Isotonic Regression with Arbitrary Convex Distance Function”, Computational Statistics Data Analysis, 11:1 (1991), 205–219 | DOI | MR | Zbl
[8] Ahuja R., Orlin J., “A Fast Scaling Algorithm for Minimizing Separable Convex Functions Subject to Chain Constraints”, Operations Research, 49:1 (2001), 784–789 | DOI | MR | Zbl
[9] Hansohm J., “Algorithms and Error Estimations for Monotone Regression on Partially Preordered Sets”, Journal of Multivariate Analysis, 98:1 (2007), 1043–1050 | DOI | MR | Zbl
[10] Dykstra R., Robertson T., “An Algorithm for Isotonic Regression for Two or More Independent Variables”, Ann. Statist., 10:1 (1982), 708–719 | DOI | MR
[11] Burdakov O., Grimvall A., Hussian M., “A Generalised PAV Algorithm for Monotonic Regression in Several Variables”, Proc. 16th Symposium in Computational Statistics, COMPSTAT (Prague, Czech Republic, 2004), 761–767 | MR
[12] Bach F., Efficient Algorithms for Non-convex Isotonic Regression through Submodular Optimization, 2017, arXiv: (accessed 10, September, 2017) 1707.09157 [cs.LG]
[13] Diggle P., Morris S., Morton-Jones T., “Case-control isotonic regression for investigation of elevation in risk around a point source”, Statistics in medicine, 18:13 (1999), 1605–1613 | 3.0.CO;2-V class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[14] Cai Y., Judd K. L., “Shape-preserving dynamic programming”, Math. Meth. Oper. Res., 77 (2013), 407–421 | DOI | MR | Zbl
[15] Frank M., Wolfe Ph., “An algorithm for quadratic programming”, Naval Research Logistics Quarterly, 3:1–2 (1956), 95–110 | DOI | MR
[16] Levitin E. S., Polyak B. T., “Constrained minimization methods”, USSR Comp. Math. M. Phys., 6:5 (1966), 1–50 | DOI
[17] Clarkson K. L., “Coresets, sparse greedy approximation, and the Frank–Wolfe algorithm”, ACM Transactions on Algorithms, 6:4 (2010), 1–30 | DOI | MR
[18] Freund R. M., Grigas P., “New analysis and results for the Frank–Wolfe method”, Math. Program., 155:1–2 (2016), 199–230 | DOI | MR | Zbl
[19] Jaggi M., “Revisiting Frank–Wolfe: Projection-free sparse convex optimization”, Proc. 30th International Conference on Machine Learning, ICML'13 (Atlanta, GA, USA, 2013), 427–435
[20] Friedman J., “Greedy Function Approximation: A Gradient Boosting Machine”, Ann. Statist., 29:5 (2001), 1189–1232 | DOI | MR | Zbl
[21] Davis G., Mallat S., Avellaneda M., “Adaptive greedy approximation”, Constr. Approx., 13 (1997), 57–98 | DOI | MR | Zbl
[22] Jones L., “On a conjecture of Huber concerning the convergence of projection pursuit regression”, Ann. Statist., 15:2 (1987), 880–882 | DOI | MR | Zbl
[23] Barron A. R., Cohen A., Dahmen W., DeVore R. A., “Approximation and Learning by Greedy Algorithms”, Ann. Statist., 36:1 (2008), 64–94 | DOI | MR | Zbl
[24] DeVore R. A., Temlyakov V. N., “Some remarks on greedy algorithms”, Advances in Computational Mathematics, 5 (1996), 173–187 | DOI | MR | Zbl
[25] Konyagin S. V., Temlyakov V. N., “A remark on greedy approximation in Banach spaces”, East J. Approx., 5:3 (1999), 365–379 | MR | Zbl
[26] Nguyen H., Petrova G., “Greedy Strategies for Convex Optimization”, Calcolo, 54:1 (2017), 207–224 | DOI | MR | Zbl
[27] Temlyakov V. N., “Dictionary descent in optimization”, Analysis Mathematica, 42:1 (2016), 69–89 | DOI | MR | Zbl
[28] DeVore R. A., Temlyakov V. N., “Convex optimization on Banach spaces”, Found. Comput. Math., 16:2 (2016), 369–394 | DOI | MR | Zbl
[29] Sidorov S., Mironov S., Pleshakov M., “Dual Greedy Algorithm for Conic Optimization Problem”, CEUR-WS, 1623, 2016, 276–283
[30] Temlyakov V. N., “Greedy approximation in convex optimization”, Constr. Approx., 41:2 (2015), 269–296 | DOI | MR | Zbl
[31] De Leeuw J., Hornik K., Mair P., “Isotone Optimization in R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods”, Journal of Statistical Software, 32:5 (2009), 1–24 | DOI
[32] Chepoi V., Cogneau D., Fichet B., “Polynomial algorithms for isotonic regression”, Lecture Notes–Monograph Series, 31 (1997), 147–160 | DOI | MR | Zbl