Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_4_a3, author = {I. A. Trishina}, title = {Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {402--418}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a3/} }
TY - JOUR AU - I. A. Trishina TI - Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 402 EP - 418 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a3/ LA - ru ID - ISU_2017_17_4_a3 ER -
%0 Journal Article %A I. A. Trishina %T Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 402-418 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a3/ %G ru %F ISU_2017_17_4_a3
I. A. Trishina. Almost periodic at infinity functions relative to the subspace of functions integrally decrease at infinity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 4, pp. 402-418. http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a3/
[1] Bor G., Almost periodic functions, OGIZ, M., 1934, 126 pp. (in Russian)
[2] Voshner S., “Uber gewisse Differential und algemeinere Gleichungen deren Losungen fastperiodisch sin”, Math. Ann., 103 (1930), 588–597 | DOI | MR
[3] Vesisovitsh A. S., “On generalist almost periodic functions”, Rros. London Math. Soc., 25 (1926), 495–512
[4] Favard J., “On the convergence of the Sturm–Liouville Series”, Ann. Math., 24:2 (1923), 109–120
[5] Levitan B. M., Stepanov V. V., “On almost periodic functions belonging in the proper sense to the class $W$”, Reports of the Academy of Sciences of the USSR, 22 (1939), 229–232 (in Russian)
[6] Shtern A. I., “Almost periodic functions and representations in locally convex spaces”, Russian Math. Surveys, 60:3 (2005), 489–557 | DOI | MR | Zbl
[7] Baskakov A. G., “Representation theory for Banach algebras, Abelian groups, and semigroups in the spectral analysis of linear operators”, J. Math. Sci., 137:4 (2006), 4885–5036 | DOI | MR
[8] Baskakov A. G., Kaluzhina N. S., “Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Math. Notes, 92:5 (2012), 587–605 | DOI | MR | Zbl
[9] Baskakov A. G., Kaluzhina N. S., Polyakov D. M., “Slowly varying at infinity operator semigroups”, Russian Math. (Iz. VUZ), 58:7 (2014), 1–10 | DOI | MR | Zbl
[10] Ryzhkova A. A., Trishina I. A., “About periodic functions at infinity”, Belgorod State University Scientific Bulletin. Mathematics Physics, 36:19(190) (2014), 71–75 (in Russian)
[11] Trishina I. A., “Algebraic properties of almost periodic functions at infinity”, Vestnik of the Department of Applied Mathematics, Informatics and Mechanics, 12 (2016), 223–227 (in Russian)
[12] Ryzhkova A. A., Trishina I. A., “Almost periodic at infinity solutions of difference equations”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:1 (2015), 45–49 (in Russian) | DOI | Zbl
[13] Levitan B. M., Zhikov V. V., Almost-periodic functions and differential equations, Moscow Univ. Press, M., 1978, 205 pp. (in Russian)
[14] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | MR | Zbl
[15] Baskakov A. G., “Harmonic and spectral analysis of power bounded operators and bounded semigroups of operators on Banach spaces”, Math. Notes, 97:2 (2015), 164–178 | DOI | MR | Zbl
[16] Daleckij U. L., Krejn M. G., Stability of solutions of differential equations in a Banach space, Nauka, M., 1970, 534 pp. (in Russian)