Adjustment of functions and Lagrange interpolation based on the nodes close to the Legendre nodes
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 4, pp. 394-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well known that the Lagrange interpolation of a continuous function based on the Chebyshev nodes may be divergent everywhere (for arbitrary nodes, almost everywhere) like the Fourier series of a summable function. On the other hand any measurable almost everywhere finite function can be “adjusted” in a set of arbitrarily small measure such that its Fourier series will be uniformly convergent. The question arises: does the class of continuous functions have a similar property with respect to any interpolation process? In the present paper we prove that there exists a matrix of nodes $\mathfrak{M}_\gamma$ arbitrarily close to the Legendre matrix with the following property: any function $f\in{C[-1,1]}$ can be adjusted in a set of arbitrarily small measure such that the interpolation process of adjusted continuous function $g$ based on the nodes $\mathfrak{M}_\gamma$ will be uniformly convergent to $g$ on $[a,b]\subset(-1,1)$.
@article{ISU_2017_17_4_a2,
     author = {V. V. Novikov},
     title = {Adjustment of functions and {Lagrange} interpolation based on the nodes close to the {Legendre} nodes},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {394--401},
     publisher = {mathdoc},
     volume = {17},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a2/}
}
TY  - JOUR
AU  - V. V. Novikov
TI  - Adjustment of functions and Lagrange interpolation based on the nodes close to the Legendre nodes
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 394
EP  - 401
VL  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a2/
LA  - ru
ID  - ISU_2017_17_4_a2
ER  - 
%0 Journal Article
%A V. V. Novikov
%T Adjustment of functions and Lagrange interpolation based on the nodes close to the Legendre nodes
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 394-401
%V 17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a2/
%G ru
%F ISU_2017_17_4_a2
V. V. Novikov. Adjustment of functions and Lagrange interpolation based on the nodes close to the Legendre nodes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 4, pp. 394-401. http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a2/

[1] Grünwald G., “Über Divergenzerscheinungen der Lagrangeschen Interpolationspolynome Stetiger Funktionen”, Ann. Math., 37 (1936), 908–918 | DOI | MR

[2] Marcinkiewicz J., “Sur la divergence des polynomes d'interpolation”, Acta Litt. Sci. Szeged, 8 (1936/37), 131–135

[3] Erdős P., Vertesi P., “On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes”, Acta. Math. Acad. Sci. Hungar., 36:1–2 (1980), 71–89 | MR | Zbl

[4] Menchoff D., “Sur les seéries de Fourier des fonctions continues”, Rec. Math. (N.S), 8(50):3 (1940), 493–518 | MR

[5] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961, 936 pp.; Bary N. K., A treatise on trigonometric series, v. 1, Pergamon Press, Oxford–New York, 1964, 533 pp. ; v. 2, 508 pp. | MR | Zbl

[6] Novikov V. V., “Interpolation of the Lagrange–Jacobi type and an analogue of the strengthened $C$-property”, Mathematics. Mechanics, 9, Saratov Univ. Press, Saratov, 2007, 66–68 (in Russian) | Zbl

[7] Nevai G., “Remarks on interpolation”, Acta Math. Acad. Sci. Hungar., 25:1–2 (1974), 123–144 (in Russian) | DOI | MR | Zbl

[8] Novikov V. V., “A Criterion for Uniform Convergence of the Lagrange–Jacobi Interpolation Process”, Math. Notes, 79:1 (2006), 232–243 | DOI | MR | Zbl

[9] Privalov A. A., “A criterion for uniform convergence of Lagrange interpolation processes”, Soviet Math. (Iz. VUZ), 30:5 (1986), 65–77 | MR | Zbl

[10] Szegő G., Orthogonal Polynomials, AMS, Providence, Rhode Island, 1939, 440 pp. | MR | Zbl