Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_4_a0, author = {I. V. Grebennikova and A. G. Kremlev}, title = {Approximation of control for singularly perturbed system with delay with integral quadratic constraints}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {368--380}, publisher = {mathdoc}, volume = {17}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a0/} }
TY - JOUR AU - I. V. Grebennikova AU - A. G. Kremlev TI - Approximation of control for singularly perturbed system with delay with integral quadratic constraints JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 368 EP - 380 VL - 17 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a0/ LA - ru ID - ISU_2017_17_4_a0 ER -
%0 Journal Article %A I. V. Grebennikova %A A. G. Kremlev %T Approximation of control for singularly perturbed system with delay with integral quadratic constraints %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 368-380 %V 17 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a0/ %G ru %F ISU_2017_17_4_a0
I. V. Grebennikova; A. G. Kremlev. Approximation of control for singularly perturbed system with delay with integral quadratic constraints. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 4, pp. 368-380. http://geodesic.mathdoc.fr/item/ISU_2017_17_4_a0/
[1] Akulenko L. D., Asymptotic Methods of Optimal Control, Nauka, M., 1987, 368 pp. (in Russian)
[2] Gaitsgory V., Rossomakhine S., “Averaging and linear programming in some singularly perturbed problems of optimal control”, Applied Mathematics and Optimization, 71:2 (2015), 195–276 | DOI | MR | Zbl
[3] Gajic Z., Lim M., Optimal control of singularly perturbed linear systems and applications. High-accuracy techniques, Marcel Dekker, Inc., N. Y., 2001, 312 pp. | MR | Zbl
[4] Glizer V. Y., Fridman E., “$H_{\infty}$ control of linear singularly perturbed systems with small state delay”, J. Math. Anal. and Appl., 250:1 (2000), 49–85 | DOI | MR | Zbl
[5] Kalinin A. I., Lavrinovich L. I., “Asymptotic of the solution to a singularly perturbed linear-quadratic optimal control problem”, Comput. Math. Math. Phys., 55:2 (2015), 194–205 | DOI | DOI | MR | Zbl
[6] Kurina G. A., Nguyen T. H., “Asymptotic solution of singularly perturbed linear-quadratic optimal control problems with discontinuous coefficients”, Comput. Math. Math. Phys., 52:4 (2012), 524–547 | DOI | MR | Zbl
[7] Kokotovic P. V., Khalil H. K., O'Reilly J., Singular perturbation methods in control : analysis and design, SIAM, Philadelphia, PA, USA, 1999, 374 pp. | MR | Zbl
[8] Krasovskii N. N., The Theory of Motion Control, Nauka, M., 1968, 475 pp. (in Russian)
[9] Kurzhanskij A. B., Control and Observation under the Uncertainty Conditions, Nauka, M., 1977, 392 pp. (in Russian)
[10] Grebennikova I. V., Kremlev A. G., “Approximation of control for singularly perturbed system with delay with geometric constraints”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:2 (2015), 142–151 (in Russian) | DOI
[11] Grebennikova I. V., Kremlev A. G., “Iterative procedure of constructing optimal solving in the minimax problem of control for singularly perturbed system with delay with geometric constraints”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 16:3 (2016), 272–280 (in Russian) | DOI | Zbl
[12] Kremlev A. G., Grebennikova I. V., “About asymptotic of a set of trajectories of a singularly perturbed system with delay”, News of Scientific Thought, Proc. Intern. Conf., v. 4, Nauka i obrazovanie, Dnepropetrovsk, 2006, 65–69 (in Russian)
[13] Rokafellar R., Convex Analysis, Mir, M., 1973, 492 pp. (in Russian)
[14] Krasovskii N. N., Some Problems in the Theory of Stability of Motion, Fizmatgiz, M., 1959, 468 pp. (in Russian)
[15] Kirillova F. M., “Relative controllability of linear dynamic systems with delay”, Dokl. AN SSSR, 174:6 (1967), 1260–1263 (in Russian) | Zbl