Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_3_a6, author = {M. A. Kuznetsova}, title = {Generalized absolute convergence of series with respect to multiplicative systems of functions of generalized bounded variation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {304--312}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a6/} }
TY - JOUR AU - M. A. Kuznetsova TI - Generalized absolute convergence of series with respect to multiplicative systems of functions of generalized bounded variation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 304 EP - 312 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a6/ LA - ru ID - ISU_2017_17_3_a6 ER -
%0 Journal Article %A M. A. Kuznetsova %T Generalized absolute convergence of series with respect to multiplicative systems of functions of generalized bounded variation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 304-312 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a6/ %G ru %F ISU_2017_17_3_a6
M. A. Kuznetsova. Generalized absolute convergence of series with respect to multiplicative systems of functions of generalized bounded variation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 304-312. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a6/
[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh series and transforms. Theory and applications, Kluwer Academic Publ., Dordrecht, 1991, 380 pp. | MR | Zbl
[2] Waterman D., “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia math., 55:1 (1976), 87–95 | DOI | MR | Zbl
[3] Shiba M., “On absolute convergence of Fourier series of functions of class $\Lambda BV^{(p)}$”, Sci. Rep. Fukushima Univ., 30 (1980), 7–10 | MR | Zbl
[4] Kita H., Yoneda K., “A generalization of bounded variation”, Acta Math. Hung., 56:3–4 (1990), 229–238 | DOI | MR | Zbl
[5] Gogoladze L., Meskhia R., “On the absolute convergence of trigonometric Fourier series”, Proc. Razmadze Math. Inst., 141 (2006), 29–40 | MR | Zbl
[6] Uljanov P. L., “On Haar series with monotone coefficients”, Izvestiya AN SSSR. Ser. matem., 28:4 (1964), 925–950 (in Russian) | Zbl
[7] Moricz F., “Absolute covergence of Walsh–Fourier series and related results”, Analysis Math., 36:4 (2010), 275–286 | DOI | MR | Zbl
[8] Golubov B. I., Volosivets S. S., “Generalized absolute convergence of single and double Fourier series with respect to multiplicative systems”, Analysis Math., 38:2 (2012), 105–122 | DOI | MR | Zbl
[9] Vyas R. G., “Generalized absolute convergence of trigonometric Fourier series”, Modern Mathematical Methods and High Performance Computing in Science and Technology, Springer Proc. in Mathematics and Statistics, 171, 2016, 231–237 | DOI | MR
[10] Vyas R. G., “Absolute convergence of Walsh–Fourier series”, Annales Univ. Sci. Budapest. Sect. Math., 56 (2013), 71–77 | MR | Zbl