Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 255-266.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we study embeddings of some spaces of functions of generalized bounded variation into classes of functions with given majorant of average modulus of continuity introduced by B. Sendov and V. Popov. We consider the spaces $\Lambda BV^{(p)}$ of functions of bounded $(\Lambda-p)$-variation suggested by D. Waterman (for $p=1$) and M. Shiba (for $p>1$) and spaces $V(v(n))$ of functions with given majorant of its modulus of variation. The last quantity was introduced by Z. A. Chanturia. The necessary and sufficient conditions of such embeddings are proved. Earlier similar embeddings into classes with given majorant of usual integral modulus of continuity were studied by Yu. E. Kuprikov, U. Goginava and V. Tskhadaia, M. Hormozi et al. Applications of obtained results to estimates of errors for some quadrature rules are given.
@article{ISU_2017_17_3_a1,
     author = {S. S. Volosivets and A. E. Vezhlev},
     title = {Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {255--266},
     publisher = {mathdoc},
     volume = {17},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - A. E. Vezhlev
TI  - Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 255
EP  - 266
VL  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a1/
LA  - ru
ID  - ISU_2017_17_3_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A A. E. Vezhlev
%T Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 255-266
%V 17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a1/
%G ru
%F ISU_2017_17_3_a1
S. S. Volosivets; A. E. Vezhlev. Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 255-266. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a1/

[1] Jordan C., “Sur la Serie de Fourier”, C. R. Acad. Sci. Paris, 92 (1981), 228–230

[2] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. and Phys., 3 (1924), 72–94 | DOI | Zbl

[3] Hardy G. H., Littlewood J. E., “Some properties of fractional integrals (I)”, Math. Zeitschr., 28 (1928), 565–606 | DOI | MR

[4] Young L. C., “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR

[5] Terekhin A. P., “Approximation of functions of bounded $p$-variation”, Izvestiya vyssh. ucheb. zaved. Matematika, 1965, no. 2, 171–187 (in Russian)

[6] Terekhin A. P., “Integral smoothness properties of periodic functions of bounded $p$-variation”, Math. Notes, 2:3 (1967), 659–665 | DOI | MR | Zbl

[7] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia math., 44:2 (1972), 107–117 | DOI | MR | Zbl

[8] Waterman D., “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia math., 55:1 (1976), 87–95 | DOI | MR | Zbl

[9] Shiba M., “On absolute convergence of Fourier series of functions of class $\Lambda BV^{(p)}$”, Sci. Rep. Fukushima Univ., 30 (1980), 7–10 | MR | Zbl

[10] Chaturia Z. A., “Absolute convergence of Fourier series”, Math. Notes, 18:2 (1975), 695–703 | DOI

[11] Kuprikov Yu. E., “On moduli of continuity of functions from Waterman classes”, Vestnik Mosk. univ. Ser. 1. Math., mech., 1997, no. 5, 59–62 (in Russian) | MR | Zbl

[12] Li Z., Wang H., “Estimates of $L^p$- continuity modulus of $\Lambda BV$ series and applications in Fourier series”, Applicable Anal., 90:3–4 (2011), 475–482 | MR | Zbl

[13] Hormozi M., “Inclusion of $\Lambda BV^{(p)}$ spaces in the classes $H^q_\omega$”, J. Math. Anal. Appl., 404:1 (2013), 195–200 | DOI | MR | Zbl

[14] Goginava U., Tskhadaia V., “On the embedding $V[v(n)]\subset H^\omega_p$”, Proc. A. Razmadze Math. Inst., 136 (2004), 47–54 | MR | Zbl

[15] Sendov B., Popov V., Average moduli of smoothness, Mir, M., 1988, 328 pp. (in Russian) | MR

[16] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge Univ. Press, Cambridge, 1934, 328 pp. | MR