Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_3_a1, author = {S. S. Volosivets and A. E. Vezhlev}, title = {Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {255--266}, publisher = {mathdoc}, volume = {17}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a1/} }
TY - JOUR AU - S. S. Volosivets AU - A. E. Vezhlev TI - Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 255 EP - 266 VL - 17 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a1/ LA - ru ID - ISU_2017_17_3_a1 ER -
%0 Journal Article %A S. S. Volosivets %A A. E. Vezhlev %T Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 255-266 %V 17 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a1/ %G ru %F ISU_2017_17_3_a1
S. S. Volosivets; A. E. Vezhlev. Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 3, pp. 255-266. http://geodesic.mathdoc.fr/item/ISU_2017_17_3_a1/
[1] Jordan C., “Sur la Serie de Fourier”, C. R. Acad. Sci. Paris, 92 (1981), 228–230
[2] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. and Phys., 3 (1924), 72–94 | DOI | Zbl
[3] Hardy G. H., Littlewood J. E., “Some properties of fractional integrals (I)”, Math. Zeitschr., 28 (1928), 565–606 | DOI | MR
[4] Young L. C., “An inequality of the Hölder type, connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR
[5] Terekhin A. P., “Approximation of functions of bounded $p$-variation”, Izvestiya vyssh. ucheb. zaved. Matematika, 1965, no. 2, 171–187 (in Russian)
[6] Terekhin A. P., “Integral smoothness properties of periodic functions of bounded $p$-variation”, Math. Notes, 2:3 (1967), 659–665 | DOI | MR | Zbl
[7] Waterman D., “On convergence of Fourier series of functions of generalized bounded variation”, Studia math., 44:2 (1972), 107–117 | DOI | MR | Zbl
[8] Waterman D., “On the summability of Fourier series of functions of $\Lambda$-bounded variation”, Studia math., 55:1 (1976), 87–95 | DOI | MR | Zbl
[9] Shiba M., “On absolute convergence of Fourier series of functions of class $\Lambda BV^{(p)}$”, Sci. Rep. Fukushima Univ., 30 (1980), 7–10 | MR | Zbl
[10] Chaturia Z. A., “Absolute convergence of Fourier series”, Math. Notes, 18:2 (1975), 695–703 | DOI
[11] Kuprikov Yu. E., “On moduli of continuity of functions from Waterman classes”, Vestnik Mosk. univ. Ser. 1. Math., mech., 1997, no. 5, 59–62 (in Russian) | MR | Zbl
[12] Li Z., Wang H., “Estimates of $L^p$- continuity modulus of $\Lambda BV$ series and applications in Fourier series”, Applicable Anal., 90:3–4 (2011), 475–482 | MR | Zbl
[13] Hormozi M., “Inclusion of $\Lambda BV^{(p)}$ spaces in the classes $H^q_\omega$”, J. Math. Anal. Appl., 404:1 (2013), 195–200 | DOI | MR | Zbl
[14] Goginava U., Tskhadaia V., “On the embedding $V[v(n)]\subset H^\omega_p$”, Proc. A. Razmadze Math. Inst., 136 (2004), 47–54 | MR | Zbl
[15] Sendov B., Popov V., Average moduli of smoothness, Mir, M., 1988, 328 pp. (in Russian) | MR
[16] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge Univ. Press, Cambridge, 1934, 328 pp. | MR