Harmonic analysis of periodic at infinity functions from Stepanov spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 172-182

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider Stepanov spaces of functions defined on $\mathbb{R}$ with their values in a complex Banach space. We introduce the notions of slowly varying and periodic at infinity functions from Stepanov space. The main results of the article are concerned with harmonic analysis of periodic at infinity functions from Stepanov space. For this class of functions we introduce the notion of a generalized Fourier series; the Fourier coefficients in this case may not be constants, they are functions that are slowly varying at infinity. We prove analogs of the classical results on Ćesaro summability. Basic results are derived with the use of isometric representations theory.
@article{ISU_2017_17_2_a4,
     author = {I. I. Strukova},
     title = {Harmonic analysis of periodic at infinity functions from {Stepanov} spaces},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {172--182},
     publisher = {mathdoc},
     volume = {17},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a4/}
}
TY  - JOUR
AU  - I. I. Strukova
TI  - Harmonic analysis of periodic at infinity functions from Stepanov spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2017
SP  - 172
EP  - 182
VL  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a4/
LA  - ru
ID  - ISU_2017_17_2_a4
ER  - 
%0 Journal Article
%A I. I. Strukova
%T Harmonic analysis of periodic at infinity functions from Stepanov spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2017
%P 172-182
%V 17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a4/
%G ru
%F ISU_2017_17_2_a4
I. I. Strukova. Harmonic analysis of periodic at infinity functions from Stepanov spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 2, pp. 172-182. http://geodesic.mathdoc.fr/item/ISU_2017_17_2_a4/