Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_1_a5, author = {A. I. Zemlyanukhin and A. V. Bochkarev}, title = {Exact solitary-wave solutions of the {Burgers--Huxley} and {Bradley--Harper} equations}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {62--70}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a5/} }
TY - JOUR AU - A. I. Zemlyanukhin AU - A. V. Bochkarev TI - Exact solitary-wave solutions of the Burgers--Huxley and Bradley--Harper equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 62 EP - 70 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a5/ LA - ru ID - ISU_2017_17_1_a5 ER -
%0 Journal Article %A A. I. Zemlyanukhin %A A. V. Bochkarev %T Exact solitary-wave solutions of the Burgers--Huxley and Bradley--Harper equations %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 62-70 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a5/ %G ru %F ISU_2017_17_1_a5
A. I. Zemlyanukhin; A. V. Bochkarev. Exact solitary-wave solutions of the Burgers--Huxley and Bradley--Harper equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 1, pp. 62-70. http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a5/
[1] Cole J. D., Perturbation Methods in Applied Mathematics, Ginn–Blaisdell, Waltham, Mass., 1968, 260 pp. | MR | Zbl
[2] Kudryashov N. A., Methods of nonlinear mathematical physics, Izd. dom “Intellekt”, Dolgoprudnyj, 2010, 368 pp. (in Russian)
[3] Manevich L. I., “Linear and nonlinear mathematical physics: from harmonic waves to solitons”, Sorosovskij obrazovatel'nyj zhurnal, 1996, no. 1, 86–93 (in Russian)
[4] Macias-Diaz J. E., Ruiz-Ramirez J., Villa J., “The numerical solution of a generalized Burgers–Huxley equation through a conditionally bounded and symmetry-preserving method”, Computers and Mathematics with Applications, 61 (2011), 3330–3342 | DOI | MR | Zbl
[5] Zemlyanukhin A. I., Bochkarev A. V., “The perturbation method and exact solutions of nonlinear dynamics equations for media with microstructure”, Vyichisl. meh. splosh. sred, 9:2 (2016), 182–191 (in Russian) | DOI
[6] Kulikov A. N., Kulikov D. A., “Formation of wavy nanostructures on the surface of flat substrates by ion bombardment”, Comput. Math. Math. Phys., 52:5 (2012), 800–814 | DOI | MR | Zbl
[7] Kulikov D. A., “Spatially inhomogeneous dissipative structures in a periodic boundary-value problem for nonlocal erosion equation”, J. Math. Sci., 205:6 (2015), 791–805 | DOI | MR | Zbl
[8] Ablowitz M., Segur H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981, 425 pp. | MR | MR | Zbl