Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2017_17_1_a0, author = {S. I. Mitrokhin}, title = {Multipoint differential operators: ``splitting'' of the multiple in main eigenvalues}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {5--18}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a0/} }
TY - JOUR AU - S. I. Mitrokhin TI - Multipoint differential operators: ``splitting'' of the multiple in main eigenvalues JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2017 SP - 5 EP - 18 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a0/ LA - ru ID - ISU_2017_17_1_a0 ER -
%0 Journal Article %A S. I. Mitrokhin %T Multipoint differential operators: ``splitting'' of the multiple in main eigenvalues %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2017 %P 5-18 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a0/ %G ru %F ISU_2017_17_1_a0
S. I. Mitrokhin. Multipoint differential operators: ``splitting'' of the multiple in main eigenvalues. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 17 (2017) no. 1, pp. 5-18. http://geodesic.mathdoc.fr/item/ISU_2017_17_1_a0/
[1] Birkhoff G. D., “On the asymptotic character of the solutions of the certain linear differential equations containing parameter”, Trans. Amer. Math. Soc., 9 (1908), 219–231 | DOI | MR
[2] Tamarkin J. D., On some general problems in the theory of ordinary linear differential equations and on the expansion in series of arbitrary functions, Typography M. P. Frolova, Petrograd, 1917, 308 pp. (in Russian)
[3] Fedorjuk M. V., “The asymptotics of solutions to ordinary linear differential equations of the $n$-th order”, Differ. Uravn., 2:4 (1966), 492–507 (in Russian)
[4] Gel'fand I. M., Levitan B. M., “On a simple identity for eigenvalues of a differential operator of the second order”, Dokl. USSR Academy of Sciences, 88 (1953), 593–596 (in Russian) | Zbl
[5] Levitan B. M., Gasymov M. G., “Determination of a differential equation by two of its spectra”, Russian Math. Surveys, 19:2 (1964), 1–63 | DOI | MR
[6] Lidskii V. B., Sadovnichii V. A., “Asymptotic formulas for the zeros of a class of entire functions”, Math. USSR-Sb., 4:4 (1968), 519–527 | DOI | MR | Zbl
[7] Il'in V. A., “Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a differential operator”, Math. Notes, 22:5 (1977), 870–882 | DOI | MR | Zbl
[8] Mitrokhin S. I., “About formulas of regularized traces for differential operators of the second order with discontinuous coefficients”, Vestnik MGU. Ser.: Mathematics, mechanics, 1986, no. 6, 3–6 (in Russian)
[9] Hald O. H., “Discontinuous inverse eigenvalue problems”, Commun. Pure Appl. Math., 37:5 (1984), 539–577 | DOI | MR | Zbl
[10] Mitrokhin S. I., “About some spectral properties of differential operators of the second order with discontinuous weight function”, Doklady Math., 356:1 (1997), 13–15 (in Russian)
[11] Gottlieb H. P. W., “Iso-spectral operators : some model examples with discontinuous coefficients”, J. Math. Anal. and Appl., 132 (1988), 123–137 | DOI | MR | Zbl
[12] Vinokurov V. A., Sadovnichii V. A., “Arbitrary-order asymptotics of the eigenvalues and eigenfunctions of the Sturm–Liouville boundary value problem on an interval with integrable potential”, Differ. Equ., 34:10 (1999), 1425–1429 | MR | Zbl
[13] Vinokurov V. A., Sadovnichii V. A., “Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential”, Izv. Math., 64:4 (2000), 695–754 | DOI | DOI | MR | Zbl
[14] Mitrokhin S. I., “Asymptotics of the eigenvalues of the differential operator of the fourth order with summable coefficients”, Vestnik MGU. Ser.: Mathematics, mechanics, 2009, no. 3, 14–17 (in Russian)
[15] Mitrokhin S. I., “On spectral properties of a differential operator with summable coefficients with a retarded argument”, Ufimsk. Mat. Zh., 3:4 (2011), 95–115 (in Russian)
[16] Mitrokhin S. I., “The spectral properties of a differential operator with summable potential and smooth weight function”, Vestnik of Samara State University. Natural Science Ser., 2008, no. 8/1(67), 172–187 (in Russian) | Zbl
[17] Naimark M. A., Linear differential operators, Nauka, M., 1969, 528 pp. (in Russian)
[18] Marchenko V. A., Sturm–Liouville operators and their applications, Naukova Dumka, Kiev, 1977, 329 pp. (in Russian) | MR
[19] Lundina D. Sh., “Exact relationship between the asymptotic expansions of the eigenvalues of boundary value problems of the Sturm–Liouville problem and the smoothness of the potential”, The theory of functions, functional analysis and their applications, 37 (1982), 74–101 (in Russian) | Zbl
[20] Bellman R., Cooke K. L., Differential-difference equations, Mir, M., 1967, 548 pp. (in Russian)
[21] Sadovnichii V. A., Lyubishkin V. A., “Some new results of the theory of regularized traces of differential operators”, Differ. Uravn., 18:1 (1982), 109–116 (in Russian)
[22] Mitrokhin S. I., “On the “splitting” in the main approximation of multiple eigenvalues of multipoint boundary value problems”, Iz. VUZ, 1997, no. 3, 37–42 | MR | Zbl