Bernstein polynomials for a standard module function on the symmetric interval
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 425-435

Voir la notice de l'article provenant de la source Math-Net.Ru

Bernstein polynomials are studied on a symmetric interval. Basic relations connected with Bernstein polynomials for a standard module function are received. By the Templ's formula we establish recurrence relations from which the Popoviciu's expansion is derived. Suitable formulas for the first and second derivatives are found. As a result an explicit algebraic form for Bernstein polynomials is obtained. We also notice some corollaries.
@article{ISU_2016_16_4_a7,
     author = {I. V. Tikhonov and V. B. Sherstyukov and M. A. Petrosova},
     title = {Bernstein polynomials for a standard module function on the symmetric interval},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {425--435},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a7/}
}
TY  - JOUR
AU  - I. V. Tikhonov
AU  - V. B. Sherstyukov
AU  - M. A. Petrosova
TI  - Bernstein polynomials for a standard module function on the symmetric interval
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 425
EP  - 435
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a7/
LA  - ru
ID  - ISU_2016_16_4_a7
ER  - 
%0 Journal Article
%A I. V. Tikhonov
%A V. B. Sherstyukov
%A M. A. Petrosova
%T Bernstein polynomials for a standard module function on the symmetric interval
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 425-435
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a7/
%G ru
%F ISU_2016_16_4_a7
I. V. Tikhonov; V. B. Sherstyukov; M. A. Petrosova. Bernstein polynomials for a standard module function on the symmetric interval. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 425-435. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a7/