Bernstein polynomials for a standard module function on the symmetric interval
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 425-435.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bernstein polynomials are studied on a symmetric interval. Basic relations connected with Bernstein polynomials for a standard module function are received. By the Templ's formula we establish recurrence relations from which the Popoviciu's expansion is derived. Suitable formulas for the first and second derivatives are found. As a result an explicit algebraic form for Bernstein polynomials is obtained. We also notice some corollaries.
@article{ISU_2016_16_4_a7,
     author = {I. V. Tikhonov and V. B. Sherstyukov and M. A. Petrosova},
     title = {Bernstein polynomials for a standard module function on the symmetric interval},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {425--435},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a7/}
}
TY  - JOUR
AU  - I. V. Tikhonov
AU  - V. B. Sherstyukov
AU  - M. A. Petrosova
TI  - Bernstein polynomials for a standard module function on the symmetric interval
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 425
EP  - 435
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a7/
LA  - ru
ID  - ISU_2016_16_4_a7
ER  - 
%0 Journal Article
%A I. V. Tikhonov
%A V. B. Sherstyukov
%A M. A. Petrosova
%T Bernstein polynomials for a standard module function on the symmetric interval
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 425-435
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a7/
%G ru
%F ISU_2016_16_4_a7
I. V. Tikhonov; V. B. Sherstyukov; M. A. Petrosova. Bernstein polynomials for a standard module function on the symmetric interval. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 425-435. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a7/

[1] Lorentz G. G., Bernstein Polynomials, Chelsea Publ. Comp., N. Y., 1986, xi+134 pp. | MR | Zbl

[2] Videnskii V. S., Bernstein Polynomials, Posobie k spetskursu, LGPI, L., 1990, 64 pp. (in Russian)

[3] Natanson I. P., Constructive theory of functions, GITTL, M.–L., 1949, 688 pp. (in Russian)

[4] Davis P. J., Interpolation and Approximation, Dover, N. Y., 1975, xvi+394 pp. | MR | Zbl

[5] DeVore R. A., Lorentz G. G., Constructive Approximation, Springer-Verlag, Berlin–Heidelberg–N. Y., 1993, x+450 pp. | MR | Zbl

[6] Tikhonov I. V., Sherstyukov V. B., “The module function approximation by Bernstein polynomials”, Vestnik ChelGU. Matematika. Mekhanika. Informatika, 15:26 (2012), 6–40 (in Russian)

[7] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Bernstein Polynomials: the old and the new”, Research on mathematical analysis, v. 1, Math Forum, 8, Publ. VNTs RAN, Vladikavkaz, 2014, 126–175 (in Russian)

[8] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Symmetric interval case in the theory of classical Bernstein polynomials”, Proc. XV Intern. Sci. Conf., Systems of computer mathematics and their applications, 15, SmolGU, Smolensk, 2014, 184–186 (in Russian)

[9] Tikhonov I. V., Sherstyukov V. B., Petrosova M. A., “Gluing rule for Bernstein polynomials on the symmetric interval”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:3 (2015), 288–300 (in Russian) | DOI | Zbl

[10] Popoviciu T., “Sur l'approximation des fonctions convexes d'ordre supérieur”, Mathematica (Cluj), 10 (1935), 49–54

[11] Lebesgue A., “Sur l'approximation des fonctions”, Bulletin des Sciences Mathématiques, 22:1 (1898), 278–287 | Zbl

[12] Landau E., “Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion”, Rendiconti del Circolo Matematico di Palermo, 25 (1908), 337–345 | DOI

[13] De la Vallée Poussin Ch., “On the approximation of functions of a real variable and on quasi-analytic functions. A course of three lectures delivered at the Rice Institute, December 16, 17 and 19, 1924”, The Rice Institute Pamphlet, 12:2 (1925), 105–172 | MR

[14] Goncharov V. L., Theory of interpolation and approximation of functions, GITTL, M.–L., 1954, 328 pp. (in Russian)

[15] Prudnikov A. P., Brychkov Ju. A., Marichev O. I., Integrals and series. Elementary functions, Nauka, M., 1981, 800 pp. (in Russian) | MR

[16] Petrosova M. A., “On the maximum rate growth of coefficients in Bernstein polynomials which are taken from the simmetric module on a symmetric interval”, Contemporary Problems of Function Theory and Their Applications, Proc. 18th Intern. Saratov Winter School, Nauchnaya kniga, Saratov, 2016, 209–211 (in Russian)

[17] Stafney J. D., “A permissible restriction on the coefficients in uniform polynomial approximation to $C[0,1]$”, Duke Math. J., 34:3 (1967), 393–396 | DOI | MR | Zbl

[18] Roulier J. A., “Permissible bounds on the coefficients of approximating polynomials”, J. Approx. Theory, 3:2 (1970), 117–122 | DOI | MR | Zbl

[19] Gurarii V. I., Meletidi M. A., “On estimates of the coefficients of polynomials approximating continuous functions”, Funct. Anal. Appl., 5:1 (1971), 60–62 | DOI | MR | Zbl