On a quotient topology in topological semigroups and groups
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 422-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper discusses the definution of the topological factor semigrop using the open congruence relations on this topological semigroup. Based on this approach, a description of all open gomomorfic images of topological semigroup is obtained. Similarly, this approach is used to describe all open homomorphic images of a topological group.
@article{ISU_2016_16_4_a6,
     author = {S. R. Sultanov},
     title = {On a quotient topology in topological semigroups and groups},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {422--424},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a6/}
}
TY  - JOUR
AU  - S. R. Sultanov
TI  - On a quotient topology in topological semigroups and groups
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 422
EP  - 424
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a6/
LA  - ru
ID  - ISU_2016_16_4_a6
ER  - 
%0 Journal Article
%A S. R. Sultanov
%T On a quotient topology in topological semigroups and groups
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 422-424
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a6/
%G ru
%F ISU_2016_16_4_a6
S. R. Sultanov. On a quotient topology in topological semigroups and groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 422-424. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a6/

[1] Kargapolov M. E., Merzlyakov U. E., Basics of group theory, Nauka, M., 1982, 288 pp. (in Russian) | MR

[2] Engelking R., General topology, Mir, M., 1986, 752 pp. (in Russian) | MR

[3] Pontryagin L. S., Continuous groups, Nauka, M., 1984, 520 pp. (in Russian) | MR