Bending of multiconnected anisotropic plates with the curvilinear holes
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 456-464.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approximate method for determination of the stress state of thin plates with curvilinear holes, consisting in the use of the complex potential theory of bending of anisotropic plates, approximating the contours of holes by ellipse arcs and straight sections, the use of conformal mapping, presentation of complex potentials by Laurent series and determining the unknown series coefficients of the generalized least squares method. Isotropic plates are considered as a special case of anisotropic plates. Numerical studies carried out for plates with square or triangular holes. Studies have established a high degree of accuracy of the results. Significant differences were noted in the literature known from the real results obtained by this approach.
@article{ISU_2016_16_4_a10,
     author = {S. A. Kaloerov and A. I. Zanko},
     title = {Bending of multiconnected anisotropic plates with the curvilinear holes},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {456--464},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a10/}
}
TY  - JOUR
AU  - S. A. Kaloerov
AU  - A. I. Zanko
TI  - Bending of multiconnected anisotropic plates with the curvilinear holes
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 456
EP  - 464
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a10/
LA  - ru
ID  - ISU_2016_16_4_a10
ER  - 
%0 Journal Article
%A S. A. Kaloerov
%A A. I. Zanko
%T Bending of multiconnected anisotropic plates with the curvilinear holes
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 456-464
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a10/
%G ru
%F ISU_2016_16_4_a10
S. A. Kaloerov; A. I. Zanko. Bending of multiconnected anisotropic plates with the curvilinear holes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 456-464. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a10/

[1] Lekhnitskii S. G., Anisotropic Plates, Springer-Verlag, New York, 1984, 546 pp.

[2] Kosmodamianskii A. S., Stressed state of anisotropic media with holes or cavities, Vishcha shk., Donetsk, 1976, 200 pp. (in Russian)

[3] Meglinskii V. V., “Some problems of bending of thin multi-connected anisotropic plates”, Collection of Papers, Some problems of elasticity theory about stress concentration and deformation of elastic bodies, 3, Saratov Univ. Press, Saratov, 1967, 97–127 (in Russian)

[4] Savin G. N., Stress distribution near the holes, Nauk. dumka, Kiev, 1968, 887 pp. (in Russian)

[5] Kaloerov S. A., Gorianskaia E. S., “The two-dimensional stress-strain state of a multi-connected anisotropic body”, The mechanics of composites. Stress concentration, v. 7, A.S.K., Kiev, 1998, 10–26 (in Russian) | MR

[6] Kaloerov S. A., Dobriak D. A., “Thermoelastic state of piecewise-homogeneous anisotropic plate”, Bulletin of Donetsk University, Series A, Natural Sciences, 2006, no. 2, 77–88 (in Russian)

[7] Kaloerov S. A., “Complex potentials the theory of bending of multi-connected anisotropic plates”, Theoretical and Applied Mechanics, 2012, no. 4(50), 115–136 (in Russian)

[8] Kaloerov S. A., Avdiushina E. V., Mironenko A. B., Stress concentration in multi-connected anisotropic plates, DonNU Press, Donetsk, 2013, 440 pp. (in Russian)

[9] Forsaythe G. E., Malcolm M. A., Moler C. B., Computer methods for mathematical computations, Prentice-Hall, New Jersey, 1977, 280 pp. | MR

[10] Kosmodamianskii A. S., Kaloerov S. A., Thermal stresses in multi-connected plates, Vishcha shk., Kiev–Donetsk, 1983, 160 pp. (in Russian)

[11] Kosmodamianskii A. S., Mitrakov V. A., “Bend of finite anisotropic plate with a curvilinear hole”, Applied Mechanics, 12:12 (1976), 96–99 (in Russian) | Zbl