Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_4_a1, author = {G. S. Berdnikov}, title = {Graphs with contours in multiresolution analysis on {Vilenkin} groups}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {377--388}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a1/} }
TY - JOUR AU - G. S. Berdnikov TI - Graphs with contours in multiresolution analysis on Vilenkin groups JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 377 EP - 388 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a1/ LA - ru ID - ISU_2016_16_4_a1 ER -
%0 Journal Article %A G. S. Berdnikov %T Graphs with contours in multiresolution analysis on Vilenkin groups %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 377-388 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a1/ %G ru %F ISU_2016_16_4_a1
G. S. Berdnikov. Graphs with contours in multiresolution analysis on Vilenkin groups. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 4, pp. 377-388. http://geodesic.mathdoc.fr/item/ISU_2016_16_4_a1/
[1] Protasov V. Yu., Farkov Yu. A., “Dyadic wavelets and refinable functions on a half-line”, Sb. Math., 197:10 (2006), 1529–1558 | DOI | DOI | MR | Zbl
[2] Farkov Yu. A., “Biorthogonal dyadic wavelets on a half-line”, Russian Math. Surveys, 62:6 (2007), 1197–1198 | DOI | DOI | MR | Zbl
[3] Protasov V. Yu., “Approximation by dyadic wavelets”, Sb. Math., 198:11 (2007), 1665–1681 | DOI | DOI | MR | Zbl
[4] Farkov Yu. A., “Orthogonal wavelets with compact support on locally compact Abelian groups”, Izv. Math., 69:3 (2005), 623–650 | DOI | DOI | MR | Zbl
[5] Farkov Yu. A., “Orthogonal wavelets on direct products of cyclic groups”, Math. Notes, 82:5–6 (2007), 843–859 | DOI | DOI | MR | Zbl
[6] Lukomskii S. F., “Multiresolution analysis on zero-dimensional Abelian groups and wavelets bases”, Sb. Math., 201:5 (2010), 669–691 | DOI | DOI | MR | Zbl
[7] Lukomskii S. F., “Step Refinable Functions and Orthogonal MRA on Vilenkin Groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR | Zbl
[8] Lukomskii S. F., “Riesz Multiresolution Analysis on Vilenkin Groups”, Doklady Math., 90:1 (2014), 412–415 | DOI | DOI | MR | Zbl
[9] Lukomskii S. F., “Riesz multiresolution analysis on zero-dimensional groups”, Izv. Math., 79:1 (2015), 145–176 | DOI | DOI | MR | Zbl
[10] Lukomskii S. F., Berdnikov G. S., “N-Valid trees in wavelet theory on Vilenkin groups”, Int. J. Wavelets Multiresolut Inf. Process., 13:5 (2015), 1550037, 23 pp. | DOI | MR | Zbl
[11] Berdnikov G. S., Lukomskii S. F., Kruss Yu. S., “On orthogonal systems of shifts of scaling function on local fields of positive characteristic”, Math. Notes, 98:2 (2015), 339–342 | DOI | DOI | MR | Zbl