On a limit value of a remainder of the Lebesgue constant corresponding to the Lagrange trigonometrical polynomial
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 302-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

The behavior of Lebesgue constant of a trigonometrical Lagrange polynomial interpolating the periodic function in an odd number of clusters is studied. The limit value of the remainder in the known asymptotic formula for this constant is found. A special representation of a remainder allowed us to establish its strict decreasing. On this basis, for a Lebesgue constant, a non-improvable uniform bilateral logarithmic function estimate is received. The extremum problems related to the best approximation of a constant of Lebesgue are solved: quite particular elements of the best approximation and the value of the best approximation are specified.
@article{ISU_2016_16_3_a7,
     author = {I. A. Shakirov},
     title = {On a limit value of a remainder of the {Lebesgue} constant corresponding to the {Lagrange} trigonometrical polynomial},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {302--310},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a7/}
}
TY  - JOUR
AU  - I. A. Shakirov
TI  - On a limit value of a remainder of the Lebesgue constant corresponding to the Lagrange trigonometrical polynomial
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 302
EP  - 310
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a7/
LA  - ru
ID  - ISU_2016_16_3_a7
ER  - 
%0 Journal Article
%A I. A. Shakirov
%T On a limit value of a remainder of the Lebesgue constant corresponding to the Lagrange trigonometrical polynomial
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 302-310
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a7/
%G ru
%F ISU_2016_16_3_a7
I. A. Shakirov. On a limit value of a remainder of the Lebesgue constant corresponding to the Lagrange trigonometrical polynomial. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 302-310. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a7/

[1] Goncharov V. L., Interpolation theory and approximations of functions, Gostekhizdat, M., 1954, 328 pp. (in Russian)

[2] Turetskii A. Kh., Theory of interpolation in problems, Vysheishaia shkola, Minsk, 1968, 320 pp. (in Russian); т. 2

[3] Privalov A. A., Theory of interpolation of functions, v. 1, Saratov Univ. Press, Saratov, 1990, 230 pp. ; v. 2, 231–424 (in Russian) | MR

[4] Dzyadyk V. K., Approximation methods for solving differential and integral equations, Naukova Dumka, Kiev, 1988, 304 pp. (in Russian)

[5] Szabados J., Vertesi P., Interpolation of Functions, World Scientific, Singapore, 1990, 305 pp. | MR | Zbl

[6] Rivlin T. J., “The Lebesgue constants for polynomial interpolation”, Functional Analysis and its Application, Int. Conf. (Madras, 1973), eds. H. G. Gamier et al., Springer-Verlag, Berlin, 1974, 422–437 | DOI | MR

[7] Brutman L., “Lebesgue functions for polynomial interpolation — a survey”, The heritage of P. L. Chebyshev: A Festschrift in honor of the 70th birthday of T. J. Rivlin, Ann. Numer. Math., 4, no. 1–4, 1997, 111–127 | MR | Zbl

[8] Vértesi P., “On the Lebesgue function and Lebesgue constant: a tribute to Paul Erdös”, Paul Erdös and his mathematics, I (Budapest, 1999), Bolyai Soc. Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002, 705–728 | MR | Zbl

[9] Simon J. S., “Lebesgue constants in polynomial interpolation”, Annal. Math. et Inf., 33 (2006), 109–123 | MR | Zbl

[10] Shakirov I. A., “Influence of the choice of Lagrange interpolation nodes on the exact and approximate values of the Lebesgue constants”, Siberian Math. J., 55:6 (2014), 1144–1160 | DOI | MR | Zbl

[11] Shakirov I. A., “About the value of uncertain quantities in the asymptotic formula for the Lebesgue constants”, Modern problems of function theory and their applications, Proc. 18th Intern. Sarat. Winter School, OOO Izd-vo “Nauchnaia kniga”, Saratov, 2016, 322–326

[12] Zigmund A., Trigonometricheskie ryady, v 2 t., v. 1, Mir, M., 1965, 616 pp.; Zygmund A., Trigonometric series, v. I, Second edition, reprinted with corrections and some additions, Cambridge Univ. Press, London–New York, 1968, 383 pp. ; v. II, 364 pp. | MR

[13] Korneichuk N. P., Extremal problems of approximation theory, Nauka, M., 1976, 320 pp. (in Russian)