Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_3_a6, author = {G. V. Khromova}, title = {On operators with discontinuous range}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {298--302}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a6/} }
G. V. Khromova. On operators with discontinuous range. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 298-302. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a6/
[1] Goncharov V. L., The theory of interpolation and approximation of functions, GITL, M., 1954 (in Russian)
[2] Khromova G. V., “The problem of the reconstruction of functions that are given with error”, U.S.S.R. Comput. Math. Math. Phys., 17:5 (1977), 1161–1171 | MR | Zbl
[3] Sendov B. X., “A modified Steklov function”, C. R. Acad. Bulg. Sci., 134:2 (1983), 355–379
[4] Khromov A. P., Khromova G. V., “On a modification of the Steklov operator”, Modern Problems in Function Theory and Applications, Abstracts of Papers of Saratov Winter School, Saratov Univ. Press, Saratov, 2010, 181 (in Russian)
[5] Khromov A. P., Khromova G. V., “A family of operators with discontinuous ranges and approximation and restoration of continuous functions”, Comput. Math. Math. Phys., 53:10 (2013), 1603–1609 | DOI | DOI | MR | Zbl
[6] Khromov A. P., Khromova G. V., “Discontinuous Steklov operators in the problem of uniform approximation of derivatives on an interval”, Comput. Math. Math. Phys., 54:9 (2014), 57–62 | DOI | DOI
[7] Khromov A. A., Khromova G. V., “The solution of the problem of determining the density of heat sources in a rod”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 15:3 (2015), 309–314 | DOI | Zbl
[8] Khromova G. V., “Regularization of Abel Equation with the Use of Discontinuous Steklov Operator”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:4 (2014), 597–601
[9] Khromova G. V., “On uniform approximations to the solution of the Abel integral equation”, Comput. Math. Math. Phys., 55:10 (2015), 1703–1712 | DOI | DOI | Zbl
[10] Nathanson I. P., Theory of functions of a real variable, Lan', St. Petersburg, 2013, 560 pp. (in Russian)