On operators with discontinuous range
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 298-302

Voir la notice de l'article provenant de la source Math-Net.Ru

With the use of operators from approximation function theory we construct integral operators with discontinuous range of values, which make it possible to obtain uniform approximations of continuous functions on the whole interval of their definition.
@article{ISU_2016_16_3_a6,
     author = {G. V. Khromova},
     title = {On operators with discontinuous range},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {298--302},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a6/}
}
TY  - JOUR
AU  - G. V. Khromova
TI  - On operators with discontinuous range
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 298
EP  - 302
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a6/
LA  - ru
ID  - ISU_2016_16_3_a6
ER  - 
%0 Journal Article
%A G. V. Khromova
%T On operators with discontinuous range
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 298-302
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a6/
%G ru
%F ISU_2016_16_3_a6
G. V. Khromova. On operators with discontinuous range. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 298-302. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a6/