Slot of variable width in a hub of friction pair
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 344-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

Plane problem of fracture mechanics for a hub of a friction pair is studied. It is suggested that near the rough friction surface, the hub has a rectilinear slot of variable width. The slot width is comparable with elastic deformations. A criterion and a method for solving the inverse problem of mechanics of contact fracture on definition of displacement function of the hub external contour points in a friction pair with regard to the temperature drop and irregularities of the contact surface in friction pair components is given. The obtained displacement function of the external contour points of the hub provides the increase of load-bearing capacity of the friction pair hub.
@article{ISU_2016_16_3_a12,
     author = {V. M. Mirsalimov and P. E. Akhundova},
     title = {Slot of variable width in a hub of friction pair},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {344--355},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a12/}
}
TY  - JOUR
AU  - V. M. Mirsalimov
AU  - P. E. Akhundova
TI  - Slot of variable width in a hub of friction pair
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 344
EP  - 355
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a12/
LA  - ru
ID  - ISU_2016_16_3_a12
ER  - 
%0 Journal Article
%A V. M. Mirsalimov
%A P. E. Akhundova
%T Slot of variable width in a hub of friction pair
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 344-355
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a12/
%G ru
%F ISU_2016_16_3_a12
V. M. Mirsalimov; P. E. Akhundova. Slot of variable width in a hub of friction pair. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 344-355. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a12/

[1] Goryacheva I. G., Contact mechanics in tribology, Kluwer. Acad. Publ., Dordrecht, 1998, 346 pp. | DOI | MR | Zbl

[2] Goryacheva I. G., Mechanics of frictional interaction, Nauka, M., 2001, 478 pp. (in Russian)

[3] Gadzhiev G. H., Mirsalimov V. M., “Optimal design of the composite cylinder–piston contacting pair”, J. of Friction and Wear, 25:5 (2004), 466–473

[4] Mirsalimov V. M., “Inverse problem of fracture mechanics for a compound cylinder”, Mech. Solids, 44:1 (2009), 141–148 | DOI | MR | MR

[5] Mirsalimov V. M., “Minimization of thermal state of contact pair bushing”, Problemy Mashinostroeniya i Nadezhnosti Mashin, 2006, no. 5, 88–95 (in Russian)

[6] Mirsalimov V. M., “Minimization of stress state of contact pair bushing”, J. of Friction and Wear, 27:4 (2006), 388–393 | DOI

[7] Mirsalimov V. M., “An inverse wear contact problem for a friction couple”, J. of Machinery Manufacture and Reliability, 37:1 (2008), 53–59 | DOI

[8] Mirsalimov V. M., “Inverse problem of fracture mechanics for a disk fitted onto a rotating shaft”, J. of Applied Mech. and Technical Physics, 50:4 (2009), 712–719 | DOI | MR | Zbl

[9] Mirsalimov V. M., Veliyev F. E., “Inverse problem of failure mechanics for a drawing die strengthened with a holder”, Acta Polytechnica Hungarica, 10 (2013), 121–138 | DOI

[10] Gadzhiev G. H., Mirsalimov V. M., “Minimizing wear of the internal surface of a split cylinder sleeve in a contact pair”, J. of Friction and Wear, 25:3 (2004), 231–237

[11] Mirsalimov V. M., Akhundova P. E., “Minimization of contact pressure for hub–shaft friction pair”, J. of Friction and Wear, 36:5 (2015), 404–408 | DOI

[12] Muskhelishvili N. I., Some Basic Problem of Mathematical Theory of Elasticity, Kluwer, Amsterdam, 1977, 732 pp. | MR

[13] Parkus H., Instationäre Wärmespannungen, Springer-Verlag, Wien, 1959, 168 pp. | DOI | MR | Zbl

[14] Panasyuk V. V., Savruk M. P., Datsyshyn A. P., The stress distribution around cracks in plates and shells, Naukova Dumka, Kiev, 1976, 443 pp. (in Russian) | MR

[15] Mirsalimov V. M., Non-one-dimensional elastoplastic problems, Nauka, M., 1987, 256 pp. (in Russian)

[16] Ladopoulos E. G., Singular integral equations: Linear and non-linear theory and its Applications in Science and Engineering, Springer-Verlag, Berlin, 2000, 556 pp. | DOI | MR | Zbl

[17] Thomas T. R., Rough surface, Longman, L., 1982, 261 pp.

[18] Bhushan B., “Contact mechanics of rough surfaces in tribology : multiple asperity contact”, Tribology Letters, 4:1 (1998), 1–35 | DOI

[19] Carbone G., Bottiglione F., “Contact mechanics of rough surfaces : a comparison between theories”, Meccanica, 46:3 (2011), 557–565 | DOI | MR | Zbl

[20] Czifra A., Horvath S., “Complex microtopography analysis in sliding friction of steel-ferodo material pair”, Meccanica, 46:3 (2011), 609–616 | DOI | Zbl

[21] Mirsalimov V. M., “Simulation of bridged crack closure in a contact pair bushing”, Mechanics of Solids, 44:2 (2009), 232–243 | DOI