Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 336-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of optimal correction of angular elements of the spacecraft orbit. Control (jet thrust vector orthogonal to the plane of the orbit) is limited by absolute value. The combined quality functional characterizes the amount of time and energy consumption. With the help of the Pontryagin maximum principle and quaternion differential equation of the spacecraft orbit orientation, we have formulated differential boundary value problem of correction of the angular elements of the spacecraft orbit. Optimal control law, transversality conditions, not containing Lagrange multipliers, examples of the numerical solution of the problem are given.
@article{ISU_2016_16_3_a11,
     author = {E. A. Kozlov and Yu. N. Chelnokov and I. A. Pankratov},
     title = {Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {336--344},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a11/}
}
TY  - JOUR
AU  - E. A. Kozlov
AU  - Yu. N. Chelnokov
AU  - I. A. Pankratov
TI  - Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 336
EP  - 344
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a11/
LA  - ru
ID  - ISU_2016_16_3_a11
ER  - 
%0 Journal Article
%A E. A. Kozlov
%A Yu. N. Chelnokov
%A I. A. Pankratov
%T Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 336-344
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a11/
%G ru
%F ISU_2016_16_3_a11
E. A. Kozlov; Yu. N. Chelnokov; I. A. Pankratov. Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 336-344. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a11/

[1] Pontriagin L. S., Boltianskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Nauka, M., 1983, 393 pp. (in Russian) | MR

[2] Chelnokov Yu. N., “Optimal reorientation of a spacecraft's orbit using a jet thrust orthogonal to the orbital plane”, J. Appl. Math. Mech., 76:6 (2012), 646–657 | DOI | MR | Zbl

[3] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “About a problem of spacecraft's orbit optimal reorientation”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:3 (2012), 87–95 (in Russian)

[4] Abalakin V. K., Aksenov E. P., Grebennikov E. A., Demin V. G., Ryabov Yu. A., Handbook on Celestial Mechanics and Astrodynamics, Nauka, M., 1976, 864 pp. (in Russian)

[5] Chelnokov Yu. N., Quaternion and Biquaternion Models and Methods of Mechanics of Solid Bodies and their Applications. Geometry and Kinematics of Motion, Fizmatlit, M., 2006, 512 pp. (in Russian)

[6] Deprit A., “Ideal frames for perturbed keplerian motions”, Celestial Mechanics, 13:2 (1976), 253–262 | DOI | MR

[7] Brumberg V. A., Analytical techniques of celestial mechanics, Springer-Verlag, Berlin, 1995, 236 pp. | MR | Zbl

[8] Chelnokov Yu. N., Pankratov I. A., Sapunkov Ya. G., “Optimal reorientation of spacecraft orbit”, Archives of Control Sciences, 24:2 (2014), 119–128 | DOI | MR | Zbl

[9] Branets V. N., Shmyglevskij I. P., Application of Quaternions in Problems of Orientation of a Rigid Body, Nauka, M., 1973, 320 pp. (in Russian) | MR

[10] Moiseev N. N., Numerical methods in the theory of optimal systems, Nauka, M., 1971, 424 pp. (in Russian) | MR

[11] Bordovitzyna T. V., Modern numerical methods in problems of celestial mechanics, Nauka, M., 1984, 136 pp. (in Russian) | MR