Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_3_a11, author = {E. A. Kozlov and Yu. N. Chelnokov and I. A. Pankratov}, title = {Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {336--344}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a11/} }
TY - JOUR AU - E. A. Kozlov AU - Yu. N. Chelnokov AU - I. A. Pankratov TI - Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 336 EP - 344 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a11/ LA - ru ID - ISU_2016_16_3_a11 ER -
%0 Journal Article %A E. A. Kozlov %A Yu. N. Chelnokov %A I. A. Pankratov %T Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 336-344 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a11/ %G ru %F ISU_2016_16_3_a11
E. A. Kozlov; Yu. N. Chelnokov; I. A. Pankratov. Investigation of the problem of optimal correction of angular elements of the spacecraft orbit using quaternion differential equation of orbit orientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 336-344. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a11/
[1] Pontriagin L. S., Boltianskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Nauka, M., 1983, 393 pp. (in Russian) | MR
[2] Chelnokov Yu. N., “Optimal reorientation of a spacecraft's orbit using a jet thrust orthogonal to the orbital plane”, J. Appl. Math. Mech., 76:6 (2012), 646–657 | DOI | MR | Zbl
[3] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “About a problem of spacecraft's orbit optimal reorientation”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 12:3 (2012), 87–95 (in Russian)
[4] Abalakin V. K., Aksenov E. P., Grebennikov E. A., Demin V. G., Ryabov Yu. A., Handbook on Celestial Mechanics and Astrodynamics, Nauka, M., 1976, 864 pp. (in Russian)
[5] Chelnokov Yu. N., Quaternion and Biquaternion Models and Methods of Mechanics of Solid Bodies and their Applications. Geometry and Kinematics of Motion, Fizmatlit, M., 2006, 512 pp. (in Russian)
[6] Deprit A., “Ideal frames for perturbed keplerian motions”, Celestial Mechanics, 13:2 (1976), 253–262 | DOI | MR
[7] Brumberg V. A., Analytical techniques of celestial mechanics, Springer-Verlag, Berlin, 1995, 236 pp. | MR | Zbl
[8] Chelnokov Yu. N., Pankratov I. A., Sapunkov Ya. G., “Optimal reorientation of spacecraft orbit”, Archives of Control Sciences, 24:2 (2014), 119–128 | DOI | MR | Zbl
[9] Branets V. N., Shmyglevskij I. P., Application of Quaternions in Problems of Orientation of a Rigid Body, Nauka, M., 1973, 320 pp. (in Russian) | MR
[10] Moiseev N. N., Numerical methods in the theory of optimal systems, Nauka, M., 1971, 424 pp. (in Russian) | MR
[11] Bordovitzyna T. V., Modern numerical methods in problems of celestial mechanics, Nauka, M., 1984, 136 pp. (in Russian) | MR