Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_3_a10, author = {Yu. A. Blinkov and Yu. N. Kondratova and A. V. Mesyanzhin and L. I. Mogilevich}, title = {Nonlinear waves mathematical modeling in coaxial shells filled with viscous liquid}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {331--336}, publisher = {mathdoc}, volume = {16}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a10/} }
TY - JOUR AU - Yu. A. Blinkov AU - Yu. N. Kondratova AU - A. V. Mesyanzhin AU - L. I. Mogilevich TI - Nonlinear waves mathematical modeling in coaxial shells filled with viscous liquid JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 331 EP - 336 VL - 16 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a10/ LA - ru ID - ISU_2016_16_3_a10 ER -
%0 Journal Article %A Yu. A. Blinkov %A Yu. N. Kondratova %A A. V. Mesyanzhin %A L. I. Mogilevich %T Nonlinear waves mathematical modeling in coaxial shells filled with viscous liquid %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 331-336 %V 16 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a10/ %G ru %F ISU_2016_16_3_a10
Yu. A. Blinkov; Yu. N. Kondratova; A. V. Mesyanzhin; L. I. Mogilevich. Nonlinear waves mathematical modeling in coaxial shells filled with viscous liquid. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 331-336. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a10/
[1] Gromeka I. S., “On the Theory of Fluid Motion in Narrow Cylindrical Tubes”, Collected works, Publ. House of the Academy of Sciences of the USSR, M.–L., 1952, 149–171 (in Russian)
[2] Zemlianukhin A. I., Mogilevich L. I., “Nonlinear Waves of Deformation in Cylindrical Shells”, Izvestiya VUZ. Applied Nonlinear Dynamics, 3:1 (1995), 52–58 (in Russian)
[3] Zemlianukhin A. I., Mogilevich L. I., “Nonlinear Waves in Inhomogeneous Cylindrical Shells: A New Evolution Equation”, Akusticheskij Zhurnal, 47:3 (2001), 359–363 (in Russian)
[4] Blinkov Yu. A., Kovaleva I. A., Mogilevich L. I., “Nonlinear Waves Dynamics Modeling in Coaxial Geometrically And Physically Nonlinear Shell Containing Viscous Incompressible Fluid in between”, Vestnik RUDN. Ser. Math., Inform., Physics, 3 (2013), 42–51 (in Russian)
[5] Blinkova A. Iu., Ivanov S. V., Kovalev A. D., Mogilevich L. I., “Mathematical and Computer Modeling of Nonlinear Waves Dynamics in a Physically Nonlinear Elastic Cylindrical Shells with Viscous Incompressible Liquid inside Them”, Izv. Saratov Univ. (N. S.), Ser. Physics, 12:2 (2012), 12–18 (in Russian)
[6] Blinkova A. Yu., Blinkov Yu. A., Ivanov S. V., Mogilevich L. I., “Nonlinear Deformation Waves in a Geometrically and Physically Nonlinear Viscoelastic Cylindrical Shell Containing Viscous Incompressible Fluid and Surrounded by an Elastic Medium”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 15:2 (2015), 193–202 (in Russian) | DOI | Zbl
[7] Blinkova A. Yu., Blinkov Yu. A., Ivanov S. V., Mogilevich L. I., “Non-linear waves in coaxial cylinder shells containing viscous liquid inside with consideration for energy dispersion”, Comp. Contin. Mech., 6:3 (2013), 336–345 (in Russian) | DOI
[8] Blinkov Yu. A., Mesyanzhin A. V., Mogilevich L. I., “Wave Occurrences Mathematical Modeling in Two Geometrically Nonlinear Elastic Coaxial Cylindrical Shells, Containing Viscous Incompressible Liquid”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 16:2 (2016), 184–197 (in Russian) | DOI
[9] Kauderer G., Nonlinear mechanics, Publ. Inostrannaja literatura, M., 1961, 778 pp. (in Russian)
[10] Vol'mir A. S., Nonlinear Dynamics of Plates and Shells, Nauka, M., 1972, 432 pp. (in Russian)
[11] Gerdt V. P., Blinkov Yu. A., “Involution and difference schemes for the Navier–Stokes equations”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 5743, 2009, 94–105 | DOI | MR | Zbl
[12] Amodio P., Blinkov Yu. A., Gerdt V. P., La Scala R., “On Consistency of Finite Difference Approximations to the Navier–Stokes Equations”, Computer Algebra in Scientific Computing, Lecture Notes in Computer Science, 8136, 2013, 46–60 | DOI | Zbl