Affine system of Walsh type. Completeness and minimality
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 247-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question on completeness and minimality of Walsh affine systems is considered. On the basis of functional-analytical structure of multishift in Hilbert space, which being the generalized analogue of the operator of simple one-side shift and closely connected with Cuntz algebra representations, we give definition of Walsh affine system. Various criteria and tests of completeness of affine systems of functions are established. A biorthogonal conjugate system is found and its completeness is proved.
@article{ISU_2016_16_3_a0,
     author = {Kh. H. H. Al-Jourany and V. A. Mironov and P. A. Terekhin},
     title = {Affine system of {Walsh} type. {Completeness} and minimality},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {247--256},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a0/}
}
TY  - JOUR
AU  - Kh. H. H. Al-Jourany
AU  - V. A. Mironov
AU  - P. A. Terekhin
TI  - Affine system of Walsh type. Completeness and minimality
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 247
EP  - 256
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a0/
LA  - ru
ID  - ISU_2016_16_3_a0
ER  - 
%0 Journal Article
%A Kh. H. H. Al-Jourany
%A V. A. Mironov
%A P. A. Terekhin
%T Affine system of Walsh type. Completeness and minimality
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 247-256
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a0/
%G ru
%F ISU_2016_16_3_a0
Kh. H. H. Al-Jourany; V. A. Mironov; P. A. Terekhin. Affine system of Walsh type. Completeness and minimality. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 3, pp. 247-256. http://geodesic.mathdoc.fr/item/ISU_2016_16_3_a0/

[1] Terekhin P. A., “On representation properties of a system of contractions and shifts of functions on an interval”, Izv. Tul'sk. Gos. Univ., Ser. Matem., Mekh., Inform., 4:1 (1998), 136–138 (in Russian) | MR

[2] Terekhin P. A., “On the multiplicative structure of the centralizer of a multishift on a Hilbert space”, Collection of Scientific Papers, Mathematics. Mechanics, 2, Saratov Univ. Press, Saratov, 2000, 119–122 (in Russian)

[3] Terekhin P. A., “Multishifts in Hilbert spaces”, Funct. Anal. Appl., 39:1 (2005), 57–67 | DOI | DOI | MR | Zbl

[4] Terekhin P. A., “Affine Systems of Walsh Type. Orthogonalization and Completion”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:4(1) (2014), 395–400 (in Russian) | Zbl

[5] Mironov V. A., Terekhin P. A., “Minimality of an affine systems of Walsh type”, Collection of Scientific Papers, Mathematics. Mechanics, 16, Saratov Univ. Press, Saratov, 2014, 41–44 (in Russian) | Zbl

[6] Mironov V. A., Terekhin P. A., “Trigonometric affine system of Walsh type”, Collection of Scientific Papers, Mathematics. Mechanics, 17, Saratov Univ. Press, Saratov, 2015, 37–39 (in Russian)

[7] Filippov V. I., Oswald P., “Reprentation in $L_p$ by series of translates and dilates of one function”, J. Approx. Theory, 82:1 (1995), 15–29 | DOI | MR | Zbl

[8] Galatenko V. V., Lukashenko T. P., Sadovnichii V. A., “On the properties of orthorecursive expansions with respect to subspaces”, Proc. Steklov Inst. Math., 284 (2014), 129–132 | DOI | DOI | MR | Zbl

[9] Kudryavtsev A. Yu., “On the convergence of orthorecursive expansions in nonorthogonal wavelets”, Math. Notes, 92:5 (2012), 643–656 | DOI | DOI | MR | MR | Zbl

[10] Sil'nichenko A. V., “On the convergence of order-preserving weak greedy algorithms”, Math. Notes, 84:5 (2008), 741–747 | DOI | DOI | MR | Zbl

[11] Sarsenbi A. M., Terekhin P. A., “Riesz basicity for general systems of functions”, J. Function Spaces, 2014 (2014), 860279, 3 pp. | DOI | MR | Zbl

[12] Terekhin P. A., “Translates and dilates of function with nonzero integral”, Collection of Scientific Papers, Mathematics. Mechanics, 1, Saratov Univ. Press, Saratov, 1999, 67–68 (in Russian)

[13] Terekhin P. A., “Inequalities for the components of summable functions and their representations by elements of a system of contractions and shifts”, Russian Math., 43:8 (1999), 70–77 | MR | Zbl

[14] Terekhin P. A., “Riesz bases generated by contractions and translations of a function on an interval”, Math. Notes, 72:4 (2002), 505–518 | DOI | DOI | MR | Zbl

[15] Terekhin P. A., “On perturbations of the Haar system”, Math. Notes, 75:3 (2004), 466–469 | DOI | DOI | MR

[16] Terekhin P. A., “Convergence of biorthogonal series in the system of contractions and translations of functions in the spaces $L^p[0,1]$”, Math. Notes, 83:5 (2008), 722–740 | DOI | DOI | MR | Zbl

[17] Terekhin P. A., “On the components of summable functions represented by elements of families of wavelet functions”, Russian Math., 52:2 (2008), 51–57 | DOI | MR | MR | Zbl

[18] Terekhin P. A., “Linear algorithms of affine synthesis in the Lebesgue space $L^1[0,1]$”, Izv. Math., 74:5 (2010), 993–1022 | DOI | DOI | MR | Zbl

[19] Terekhin P. A., “Best approximation of functions in $L^p$ by polynomials on affine system”, Sb. Math., 202:2 (2011), 279–306 | DOI | DOI | MR | Zbl