Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2016_16_1_a5, author = {V. A. Yurko}, title = {On inverse periodic problem for differential operators for central symmetric potentials}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {68--75}, publisher = {mathdoc}, volume = {16}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a5/} }
TY - JOUR AU - V. A. Yurko TI - On inverse periodic problem for differential operators for central symmetric potentials JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2016 SP - 68 EP - 75 VL - 16 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a5/ LA - ru ID - ISU_2016_16_1_a5 ER -
%0 Journal Article %A V. A. Yurko %T On inverse periodic problem for differential operators for central symmetric potentials %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2016 %P 68-75 %V 16 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a5/ %G ru %F ISU_2016_16_1_a5
V. A. Yurko. On inverse periodic problem for differential operators for central symmetric potentials. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 1, pp. 68-75. http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a5/
[1] Marchenko V. A., Sturm–Liouville operators and their applications, Birkhäuser, 1986 | MR
[2] Levitan B. M., Inverse Sturm–Liouville problems, VNU Sci. Press, Utrecht, 1987 | MR | Zbl
[3] Pöschel J., Trubowitz E., Inverse Spectral Theory, Academic Press, N.Y., 1987 | MR | Zbl
[4] Freiling G., Yurko V. A., Inverse Sturm–Liouville Problems and their Applications, NOVA Science Publ., N.Y., 2001 | MR | Zbl
[5] Yurko V. A., Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl
[6] Stankevich I. V., “An inverse problem of spectral analysis for Hill's equation”, Soviet Math. Dokl., 11 (1970), 582–586 | MR | Zbl
[7] Marchenko V. A., Ostrovskii I. V., “A characterization of the spectrum of the Hill operator”, Math. USSR-Sb., 26:4 (1975), 493–554 | DOI | MR | Zbl
[8] Yurko V. A., “An inverse problem for second order differential operators with regular boundary conditions”, Math. Notes, 18:3–4 (1975), 928–932 | DOI | MR | Zbl
[9] Yurko V. A., “On a periodic boundary value problem”, Differ. Equations and Theory of Functions, Saratov Univ. Press, Saratov, 1981, 109–115 (in Russian)
[10] Yurko V. A., “On recovering differential operators with nonseparated boundary conditions”, Study in Math. and Appl., Bashkir Univ. Press, Ufa, 1981, 55–58 (in Russian)
[11] Plaksina O. A., “Inverse problems of spectral analysis for the Sturm–Liouville operators with nonseparated boundary conditions”, Math. USSR-Sb., 59:1 (1988), 1–23 | DOI | MR | Zbl | Zbl
[12] Guseinov I. M., Gasymov M. G., Nabiev I. M., “An inverse problem for the Sturm–Liouville operator with nonseparable self-adjoint boundary conditions”, Siberian Math. J., 31:6 (1990), 910–918 | MR
[13] Guseinov I. M., Nabiev I. M., “Solution of a class of inverse boundary-value Sturm–Liouville problems”, Sb. Math., 186:5 (1995), 661–674 | DOI | MR | Zbl
[14] Kargaev P., Korotyaev E., “The inverse problem for the Hill operator, a direct approach”, Invent. Math., 129:3 (1997), 567–593 | DOI | MR | Zbl
[15] Yurko V. A., “On differential operators with nonseparated boundary conditions”, Funct. Anal. Appl., 28:4 (1994), 295–297 | DOI | MR | Zbl
[16] Yurko V. A., “The inverse spectral problem for differential operators with nonseparated boundary conditions”, J. Math. Analysis Appl., 250:1 (2000), 266–289 | DOI | MR | Zbl
[17] Freiling G., Yurko V. A., “On the stability of constructing a potential in the central symmetry case”, Applicable Analysis, 90:12 (2011), 1819–1828 | DOI | MR | Zbl