Stochastic simulation of diffusion filtering
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 1, pp. 5-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulated and investigated is the system of kinetic equations describing the process of diffusion filtering based on a stochastic approach. The theorem of existence and uniqueness of the solution for the case of a continuous density is prove. We obtain the representation of solution in the form of a uniformly convergent and asymptotic series, and explore the nature of its behavior at infinity. The concrete particular cases such as the density of the delta function and a uniform distribution are considered. The finite-difference scheme for the solution of the corresponding Cauchy problem on finite intervals of time is constructed and justified. The results of computer simulation are given.
@article{ISU_2016_16_1_a0,
     author = {R. V. Arutyunyan},
     title = {Stochastic simulation of diffusion filtering},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a0/}
}
TY  - JOUR
AU  - R. V. Arutyunyan
TI  - Stochastic simulation of diffusion filtering
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 5
EP  - 12
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a0/
LA  - ru
ID  - ISU_2016_16_1_a0
ER  - 
%0 Journal Article
%A R. V. Arutyunyan
%T Stochastic simulation of diffusion filtering
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 5-12
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a0/
%G ru
%F ISU_2016_16_1_a0
R. V. Arutyunyan. Stochastic simulation of diffusion filtering. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a0/

[1] Reznikov G. D., Zhikhar' A. S., “Numerical and analytical approach to the modeling of the transport of particles in the filter bed”, Mathematical modeling, 7:6 (1995), 118–125 (in Russian) | MR

[2] Gavich I. K., Zektser I. S., Kovalevskii V. S., Iazvin L. S., Pinneker E. V., Bondarenko S. S., Borevskii L. V., Dziuba A. A., Fundamentals of hydrogeology. Hidrogeodinamika, Nauka, Novosibirsk, 1983, 241 pp. (in Russian)

[3] Gurevich A. E., A Practical Guide to the study of groundwater movement in the search for minerals, Nedra, L., 1980, 216 pp. (in Russian)

[4] Kolesnikov A. V., Mathematical modeling of fluid flow in heterogeneous and periodic porous bodies by homogeneous anisotropic equivalenting, Avtoref. dis. ... kand. tekhn. nauk, Severo-Kavkazskii federal'nyi universitet, Stavropol', 2014 (in Russian)

[5] M. Abramovits, I. Stigan (eds.), Handbook of special functions, Nauka, M., 1979, 832 pp. (in Russian) | MR

[6] Trenogin V. A., Function analysis, Nauka, M., 1980, 496 pp. (in Russian) | MR