Stochastic simulation of diffusion filtering
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 1, pp. 5-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Formulated and investigated is the system of kinetic equations describing the process of diffusion filtering based on a stochastic approach. The theorem of existence and uniqueness of the solution for the case of a continuous density is prove. We obtain the representation of solution in the form of a uniformly convergent and asymptotic series, and explore the nature of its behavior at infinity. The concrete particular cases such as the density of the delta function and a uniform distribution are considered. The finite-difference scheme for the solution of the corresponding Cauchy problem on finite intervals of time is constructed and justified. The results of computer simulation are given.
@article{ISU_2016_16_1_a0,
     author = {R. V. Arutyunyan},
     title = {Stochastic simulation of diffusion filtering},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {5--12},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a0/}
}
TY  - JOUR
AU  - R. V. Arutyunyan
TI  - Stochastic simulation of diffusion filtering
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2016
SP  - 5
EP  - 12
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a0/
LA  - ru
ID  - ISU_2016_16_1_a0
ER  - 
%0 Journal Article
%A R. V. Arutyunyan
%T Stochastic simulation of diffusion filtering
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2016
%P 5-12
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a0/
%G ru
%F ISU_2016_16_1_a0
R. V. Arutyunyan. Stochastic simulation of diffusion filtering. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 16 (2016) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/ISU_2016_16_1_a0/