Micropolar thermoelastic continuum models with constrained microstructural parameters
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 451-461.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new micropolar thermoelastic continuum model forrmulated by microstructural $d$-vectors and $d$-tensors of an arbitrary ranks is proposed. The microstructural vectorial and tensorial extra-field variables are restricted by holonomic or non-holonomic (differential) constraints. The study is carried out in the framework of the Lagrange field formalism as a $4$covariant field theory. Taking into consideration of holonomic or differential constraints involving microstructural parameters implies problem formulation as a problem of calculus of variations with constraints, namely as the variational Lagrange problem. The Lagrange multipliers technique is employed for derivation of field equations when microstructural parameters are restricted by the two types of constraints. Micropolar thermoelastic continuum model for the case of rigid rotations of the micropolar trihedron is considered as an example.
@article{ISU_2015_15_4_a9,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {Micropolar thermoelastic continuum models with constrained microstructural parameters},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {451--461},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a9/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - Micropolar thermoelastic continuum models with constrained microstructural parameters
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 451
EP  - 461
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a9/
LA  - ru
ID  - ISU_2015_15_4_a9
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T Micropolar thermoelastic continuum models with constrained microstructural parameters
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 451-461
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a9/
%G ru
%F ISU_2015_15_4_a9
V. A. Kovalev; Yu. N. Radayev. Micropolar thermoelastic continuum models with constrained microstructural parameters. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 451-461. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a9/

[1] Gunter N. M., A Cours of the Calculus of Variations, Gostekhteoretizdat, M.–L., 1941, 308 pp. (in Russian)

[2] Berdichevskii V. L., Variational Principles of Continuum Mechanics, Nauka, M., 1983, 448 pp. (in Russian)

[3] Toupin R. A., “Theories of Elasticity with Couple-stress”, Arch. Rational Mech. Anal., 17:5 (1964), 85–112 | MR | Zbl

[4] Sedov L. I., An Introduction to Continuum Mechanics, Fizmatgiz, M., 1962, 284 pp. (in Russian)

[5] Illyushin A. A., Continuum Mechanics, Moscow Univ. Press, M., 1978, 287 pp. (in Russian)

[6] Green A., Adkins G., Large Elastic Deformations and Nonlinear Continuum Mechanics, Mir, M., 1965, 456 pp. (in Russian)

[7] Cosserat E. et F., Théorie des corps déformables, Librairie Scientifique A. Hermann et Fils, Paris, 1909, 226 pp.

[8] Kovalev V. A., Radayev Yu. N., Elements of the Field Theory : Variational Symmetries and Geometric Invariants, Fizmatlit, M., 2009, 156 pp. (in Russian)

[9] Kovalev V. A., Radayev Yu. N., Wave Problems of Field Theory and Thermomechanics, Saratov Univ. Press, Saratov, 2010, 328 pp. (in Russian)