Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_4_a8, author = {G. N. Belostochny and O. A. Myltcina}, title = {The geometrical irregular plates under the influence of the quick changed on the time coordinate forces and temperature effects}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {442--451}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a8/} }
TY - JOUR AU - G. N. Belostochny AU - O. A. Myltcina TI - The geometrical irregular plates under the influence of the quick changed on the time coordinate forces and temperature effects JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 442 EP - 451 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a8/ LA - ru ID - ISU_2015_15_4_a8 ER -
%0 Journal Article %A G. N. Belostochny %A O. A. Myltcina %T The geometrical irregular plates under the influence of the quick changed on the time coordinate forces and temperature effects %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 442-451 %V 15 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a8/ %G ru %F ISU_2015_15_4_a8
G. N. Belostochny; O. A. Myltcina. The geometrical irregular plates under the influence of the quick changed on the time coordinate forces and temperature effects. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 4, pp. 442-451. http://geodesic.mathdoc.fr/item/ISU_2015_15_4_a8/
[1] Belostochny G. N., Geometrically irregular shells and plates under the influence of temperature factors, Dr. techn. sci. diss., MAI, M., 1992, 593 pp. (in Russian)
[2] Myltcina O. A., Belostochny G. N., “Thermoelasticity of the reinforced plate under influence of quick change for coordinate of thermal and force factors on the boundary”, Vestnik Moskovskogo aviatsionnogo instituta, 21:2 (2014), 169–174 (in Russian) | MR
[3] Belostochny G. N., Gushchin B. A., Equations of thermoelasticity of shells with step variation in thickness, Dep. in VINITI 14.06.90, no. 3434-B90, Saratov Polytechnic Institute, Saratov, 1990, 11 pp. (in Russian)
[4] Belostochny G. N., Rassudov V. M., Nonstationary equation of thermal conductivity of supported shells, and some solution of the problem of the thermo elasticity of ribbed plats and shallow shells with account of the coherence of temperature and deformation fields, Dep. in VINITI 6.04.84, no. 2080-84, Saratov Polytechnic Institute, Saratov, 1984, 49 pp. (in Russian)
[5] G. V. Uzhik (ed.), Problems of high temperatures in the aerostructures, Izd-vo inostr. lit., M., 1961, 595 pp. (in Russian)
[6] Chernukha Yu. A., “The discrete-continuum model of the temperature fields of ribbed shells”, Mat. metody i fiz.-mekh. polia, 7 (1978), 43–47 (in Russian) (accessed 10, September, 2015) | Zbl
[7] Podstrigach Ia. S., Shvets R. N., Thermoelasticity of thin shells, Naukova Dumka, Kiev, 1978, 343 pp. (in Russian)
[8] V. V. Kabanov (ed.), Calculation of the components of the aircraft structure, Mashinostroenie, M., 1982, 136 pp. (in Russian)
[9] Beloschtochny G. N., “Analytical methods for definition of the closed integrals of singular differential equations of thermoelasticity of geometrically irregular shells”, Doklady Akademii voennykh nauk, 1999, no. 1, 14–26 (in Russian)
[10] Belostochny G. N., Gushchin B. A., “The effective method for solution of linear inhomogeneous differential equations”, Applications strained condition of elastic bodies, Interuniversity scientific collection, Publ. Saratov Pedagogical Institute, Saratov, 1987, 54–58 (in Russian) | MR
[11] Belostochnyi G. N., Zelepukin Iu. V., Some solutions of the problems of incoherent thermoelasticity of the isotopic systems “plate–ribs” on the basis of the continuum and discrete models, Dep. in VINITI 7.01.82, no. 521-82, Saratov Polytechnic Institute, Saratov, 1982, 12 pp. (in Russian)