Homogenization of the acoustics mathematical model
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 264-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a mathematical model of acoustics in heterogeneous medium with two different components with the common boundary. One of these is a bounded liquid domain and the other is a poroelastic medium. Poroelastic medium is perforated by pores. A pore space is filled with a viscous liquid. The motion of the liquid and the joint motion of the poroelastic media with porous space are governed by the differential equations based on the continuum mechanics laws. These equations contain rapidly oscillating terms, depending on the small parameter. The small parameter is the ratio of the average pores size to the size of domain under consideration. Rapidly oscillating terms prevent from the numerical simulations. The unique existence of the generalized solution of the boundary-value problem is proved. Homogenized equations (i.e. free from rapidly oscillating terms) are based upon the Nguetseng method of the two-scale convergence. We derived approximate models useful to the numerical calculations.
@article{ISU_2015_15_3_a3,
     author = {A. A. Gerus and S. A. Gritsenko},
     title = {Homogenization of the acoustics mathematical model},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {264--272},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a3/}
}
TY  - JOUR
AU  - A. A. Gerus
AU  - S. A. Gritsenko
TI  - Homogenization of the acoustics mathematical model
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 264
EP  - 272
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a3/
LA  - ru
ID  - ISU_2015_15_3_a3
ER  - 
%0 Journal Article
%A A. A. Gerus
%A S. A. Gritsenko
%T Homogenization of the acoustics mathematical model
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 264-272
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a3/
%G ru
%F ISU_2015_15_3_a3
A. A. Gerus; S. A. Gritsenko. Homogenization of the acoustics mathematical model. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 264-272. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a3/

[1] Gerus A. A., Gritsenko S. A., “Acoustics Model in the Configuration Elastic Body — elastic porous medium”, Belgorod State University Scientific Bulletin. Mathematics and Physics, 25(196):37 (2014), 68–75 | Zbl

[2] Meirmanov A., “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48 (2007), 519–538 | DOI | MR | Zbl

[3] Meirmanov A., “Acoustics Equations in Elastic Porous Media”, Sib. Zh. Ind. Mat., XIII:2 (2010), 98–110 (in Russian) | Zbl

[4] Meirmanov A., “Derivation of the equations of nonisothermal acoustics in elastic porous media”, Sib. Math. J., 51:1 (2010), 128–143 | DOI | MR | Zbl

[5] Lukkassen D., Nguetseng G., Wall P., “Two-scale convergence”, Intern. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[6] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, Math. Pures et Appl., 64 (1985), 31–75 | MR | Zbl