Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_3_a3, author = {A. A. Gerus and S. A. Gritsenko}, title = {Homogenization of the acoustics mathematical model}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {264--272}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a3/} }
TY - JOUR AU - A. A. Gerus AU - S. A. Gritsenko TI - Homogenization of the acoustics mathematical model JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 264 EP - 272 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a3/ LA - ru ID - ISU_2015_15_3_a3 ER -
A. A. Gerus; S. A. Gritsenko. Homogenization of the acoustics mathematical model. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 264-272. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a3/
[1] Gerus A. A., Gritsenko S. A., “Acoustics Model in the Configuration Elastic Body — elastic porous medium”, Belgorod State University Scientific Bulletin. Mathematics and Physics, 25(196):37 (2014), 68–75 | Zbl
[2] Meirmanov A., “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48 (2007), 519–538 | DOI | MR | Zbl
[3] Meirmanov A., “Acoustics Equations in Elastic Porous Media”, Sib. Zh. Ind. Mat., XIII:2 (2010), 98–110 (in Russian) | Zbl
[4] Meirmanov A., “Derivation of the equations of nonisothermal acoustics in elastic porous media”, Sib. Math. J., 51:1 (2010), 128–143 | DOI | MR | Zbl
[5] Lukkassen D., Nguetseng G., Wall P., “Two-scale convergence”, Intern. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl
[6] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, Math. Pures et Appl., 64 (1985), 31–75 | MR | Zbl