Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 251-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study approximation by Vilenkin polynomials in weighted $L^p$ spaces. We prove the Butzer–Scherer type result on equivalence between the rate of best approximation of a function $f$ and the growth of generalized derivatives and approximating properties of the best approximation polynomial $t_n(f)$. Some applications to the approximation by linear means of the Fourier–Vilenkin series are given.
@article{ISU_2015_15_3_a1,
     author = {S. S. Volosivets and T. V. Likhacheva},
     title = {Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a1/}
}
TY  - JOUR
AU  - S. S. Volosivets
AU  - T. V. Likhacheva
TI  - Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 251
EP  - 258
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a1/
LA  - ru
ID  - ISU_2015_15_3_a1
ER  - 
%0 Journal Article
%A S. S. Volosivets
%A T. V. Likhacheva
%T Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 251-258
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a1/
%G ru
%F ISU_2015_15_3_a1
S. S. Volosivets; T. V. Likhacheva. Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 251-258. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a1/

[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh series and transforms. Theory and applications, Kluwer, Dordrecht, 1991 | MR | MR | Zbl

[2] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl

[3] Young W. S., “Weighted norm inequalities for Vilenkin–Fourier series”, Trans. Amer. Math. Soc., 340:1 (1993), 273–291 | DOI | MR | Zbl

[4] Volosivets S. S., “Approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces”, Siberian Math. J., 56:1 (2015), 82–93 | Zbl

[5] Ky N. X., “On approximation by trigonometric polynomials in $L^p_u$-spaces”, Studia Sci. Math. Hungar., 28 (1993), 183–188 | MR | Zbl

[6] Ky N. X., “Moduli of mean smoothness and approximation with $A_p$ weights”, Annales Univ. Sci. Budapest. Eötvös Sect. Math., 40 (1997), 37–48 | MR

[7] Kokilashvili V., Yildirir Y. E., “On the approximation in weighted Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 143 (2007), 103–113 | MR | Zbl

[8] Timan A. F., Theory of approximation of functions of a real variable, MacMillan, New York, 1963 | MR

[9] Butzer P. L., Scherer K., “On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and theorems of M. Zamansky and S. B. Stečkin”, Aequationes Math., 3 (1969), 170–185 | DOI | MR | Zbl

[10] Butzer P. L., Wagner H. J., “On dyadic analysis based on the pointwise dyadic derivative”, Analysis Math., 1:3 (1975), 171–196 | DOI | MR | Zbl

[11] Iofina T. V., Volosivets S. S., “On the degree of approximation by means of Fourier–Vilenkin series in Hölder and $L^p$ norm”, East J. Approximations, 15:3 (2009), 143–158 | MR | Zbl