Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_3_a1, author = {S. S. Volosivets and T. V. Likhacheva}, title = {Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {251--258}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a1/} }
TY - JOUR AU - S. S. Volosivets AU - T. V. Likhacheva TI - Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 251 EP - 258 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a1/ LA - ru ID - ISU_2015_15_3_a1 ER -
%0 Journal Article %A S. S. Volosivets %A T. V. Likhacheva %T Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 251-258 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a1/ %G ru %F ISU_2015_15_3_a1
S. S. Volosivets; T. V. Likhacheva. Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 3, pp. 251-258. http://geodesic.mathdoc.fr/item/ISU_2015_15_3_a1/
[1] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh series and transforms. Theory and applications, Kluwer, Dordrecht, 1991 | MR | MR | Zbl
[2] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226 | DOI | MR | Zbl
[3] Young W. S., “Weighted norm inequalities for Vilenkin–Fourier series”, Trans. Amer. Math. Soc., 340:1 (1993), 273–291 | DOI | MR | Zbl
[4] Volosivets S. S., “Approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces”, Siberian Math. J., 56:1 (2015), 82–93 | Zbl
[5] Ky N. X., “On approximation by trigonometric polynomials in $L^p_u$-spaces”, Studia Sci. Math. Hungar., 28 (1993), 183–188 | MR | Zbl
[6] Ky N. X., “Moduli of mean smoothness and approximation with $A_p$ weights”, Annales Univ. Sci. Budapest. Eötvös Sect. Math., 40 (1997), 37–48 | MR
[7] Kokilashvili V., Yildirir Y. E., “On the approximation in weighted Lebesgue spaces”, Proc. A. Razmadze Math. Inst., 143 (2007), 103–113 | MR | Zbl
[8] Timan A. F., Theory of approximation of functions of a real variable, MacMillan, New York, 1963 | MR
[9] Butzer P. L., Scherer K., “On the fundamental approximation theorems of D. Jackson, S. N. Bernstein and theorems of M. Zamansky and S. B. Stečkin”, Aequationes Math., 3 (1969), 170–185 | DOI | MR | Zbl
[10] Butzer P. L., Wagner H. J., “On dyadic analysis based on the pointwise dyadic derivative”, Analysis Math., 1:3 (1975), 171–196 | DOI | MR | Zbl
[11] Iofina T. V., Volosivets S. S., “On the degree of approximation by means of Fourier–Vilenkin series in Hölder and $L^p$ norm”, East J. Approximations, 15:3 (2009), 143–158 | MR | Zbl