Edge waves in plates with fixed faces and various boundary conditions on~the front edge
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 187-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the propagation of surface waves in plates subject to free or mixed boundary conditions on the front edge. Symmetric and antisymmetric waves in plates with fixed faces are considered. Asymptotic analysis is performed, which shows that there is an infinite spectrum of higher order edge waves in plates. Asymptotics of phase velocity are obtained for large values of wave number. It is demonstrated that in the short-wave limit the phase velocity of all higher order edge waves tends to the velocity of Rayleigh wave or shear wave, depending on the boundary conditions on the front edge.
@article{ISU_2015_15_2_a8,
     author = {R. V. Ardazishvili and M. V. Wilde and L. Yu. Kossovich},
     title = {Edge waves in plates with fixed faces and various boundary conditions on~the front edge},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {187--193},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a8/}
}
TY  - JOUR
AU  - R. V. Ardazishvili
AU  - M. V. Wilde
AU  - L. Yu. Kossovich
TI  - Edge waves in plates with fixed faces and various boundary conditions on~the front edge
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 187
EP  - 193
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a8/
LA  - ru
ID  - ISU_2015_15_2_a8
ER  - 
%0 Journal Article
%A R. V. Ardazishvili
%A M. V. Wilde
%A L. Yu. Kossovich
%T Edge waves in plates with fixed faces and various boundary conditions on~the front edge
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 187-193
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a8/
%G ru
%F ISU_2015_15_2_a8
R. V. Ardazishvili; M. V. Wilde; L. Yu. Kossovich. Edge waves in plates with fixed faces and various boundary conditions on~the front edge. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 187-193. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a8/

[1] Belubekian M. V., “Surface waves in elastic medium”, Problems in Solid Mechanics, Institute of mechanics, National Academy of Sciences of the Republic of Armenia, Yerevan, 1997, 79–96 (in Russian)

[2] Kaplunov J. D., Prikazchikov D. A., Rogerson G. A., “On three dimesoinal edge waves in pre-stressed incompressible elastic solids”, J. Acoust. Soc. Am., 118:5 (2005), 2975–2983 | DOI | MR

[3] Zernov V., Kaplunov J. D., “Three-dimensional edge waves in plates”, Proc. R. Soc. Lond. A, 464 (2008), 301–318 | DOI | MR | Zbl

[4] Wilde M. V., Kaplunov J. D., Kossovich L. Yu., Edge and interface resonance phenomena in elastic bodies, Fizmatlit, M., 2010, 280 pp. (in Russian)

[5] Ardazishvili R. V., Wilde M. V., Kossovich L. Yu., “Antisymmetric Higher Order Edge Waves in Plates”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 13:1 (2013), 50–56 (in Russian)

[6] Ardazishvili R. V., “Three-dimensional surface wave for mixed boundary conditions on the surface”, Proceedings of Young Scientists School-Conference MECHANICS-2013 (Tsakhkadzor, Armenia, 2013), 74–79