Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_2_a7, author = {I. A. Shakirov}, title = {On a refinement of the asymptotic formula for the {Lebesgue} constants}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {180--186}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a7/} }
TY - JOUR AU - I. A. Shakirov TI - On a refinement of the asymptotic formula for the Lebesgue constants JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 180 EP - 186 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a7/ LA - ru ID - ISU_2015_15_2_a7 ER -
%0 Journal Article %A I. A. Shakirov %T On a refinement of the asymptotic formula for the Lebesgue constants %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 180-186 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a7/ %G ru %F ISU_2015_15_2_a7
I. A. Shakirov. On a refinement of the asymptotic formula for the Lebesgue constants. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 180-186. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a7/
[1] Goncharov V. L., Interpolation theory and approximations of functions, GTTI, M.–Leningrad, 1934 (in Russian)
[2] Natanson I. P., Constructive function theory, v. 1–3, F. Ungar Publ. Co., New York, 1964–1965 | Zbl
[3] Stechkin S. B., Subbotin Yu. N., Splins in computational mathematics, Nauka, M., 1976 (in Russian) | MR
[4] Korneichuk N. P., Constants in approximation theory, Nauka, M., 1987 (in Russian) | MR
[5] Dzyadyk V. K., Approximation Methods for solving Differential and Integral Equations, Naukova Dumka, Kiev, 1988 (in Russian) | MR
[6] Privalov A. A., Interpolation of functions theory, Saratov Univ. Press, Saratov, 1990 (in Russian) | MR
[7] Shakirov I. A., “About the fundamental characteristics of the lagrange interpolation polynomials family”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(2) (2013), 99–104 (in Russian)
[8] Gabdulhaev B. G., Optimal approximations of linear problems solutions, Kazan Univer. Press, Kazan, 1980 (in Russian) | MR
[9] Babenko K. I., Fundamentals of numerical analysis, NIC Regular and chaotic dynamics, M.–Izhevsk, 2002 (in Russian)
[10] Brutman L., “Lebesgue functions for polynomial interpolation — a survey”, Ann. Numer. Math., 4 (1997), 111–127 | MR | Zbl
[11] Vertesi P., “On the Lebesgue function and Lebesgue constant : a tribute to Paul Erdos”, Bolyai Society of Mathematical Studies, 11, 2002, 705–728 | MR | Zbl