Approximation of control for singularly perturbed system with delay with geometric constraints
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 142-151 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The control problem for the singularly perturbed system with delay with indeterminate initial conditions and geometric constraints on the control resources according to the minimax criterion is considered. A limiting problem is formulated for which a specially selected quality functional is chosen. We propose the procedure for initial approximation construction of a control response in the control minimax problem.
@article{ISU_2015_15_2_a2,
     author = {I. V. Grebennikova and A. G. Kremlev},
     title = {Approximation of control for singularly perturbed system with delay with geometric constraints},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {142--151},
     year = {2015},
     volume = {15},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a2/}
}
TY  - JOUR
AU  - I. V. Grebennikova
AU  - A. G. Kremlev
TI  - Approximation of control for singularly perturbed system with delay with geometric constraints
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 142
EP  - 151
VL  - 15
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a2/
LA  - ru
ID  - ISU_2015_15_2_a2
ER  - 
%0 Journal Article
%A I. V. Grebennikova
%A A. G. Kremlev
%T Approximation of control for singularly perturbed system with delay with geometric constraints
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 142-151
%V 15
%N 2
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a2/
%G ru
%F ISU_2015_15_2_a2
I. V. Grebennikova; A. G. Kremlev. Approximation of control for singularly perturbed system with delay with geometric constraints. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 142-151. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a2/

[1] Krasovskii N. N., The Theory of Motion Control, Nauka, M., 1968, 475 pp. (in Russian) | MR

[2] Kurzhanskij A. B., Control and Surveillance in the Face of Uncertainty, Nauka, M., 1977, 392 pp. (in Russian) | MR

[3] Kremlev A. G., “Asymptotic properties of a set of trajectories of a singularly perturbed system in the optimal control problem”, Autom. Remote Control, 54:9 (1993), 1353–1367 | MR | Zbl

[4] Grebennikova I. V., “Solution approximation in a minimax control problem for a singularly perturbed system with delay”, Russian Math., 55:10 (2011), 23–33 | DOI | MR | Zbl

[5] Grebennikova I. V., “The problem of optimal control for singularly perturbed system with delay with integral quadratic constraints”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:4 (2012), 3–11 (in Russian)

[6] Kremlev A. G., Grebennikova I. V., “About asymptotic of a set of trajectories of a singularly perturbed system with delay”, News of Scientific Thought, Proceedings of the international conference, v. 4, Nauka i obrazovanie, Dneproperovsk, 2006, 65–69 (in Russian)

[7] Rokafellar R., Convex Analysis, Mir, M., 1973, 492 pp. (in Russian)

[8] Krasovskii N. N., Some Problems in the Theory of Stability of Motion, Fizmatgiz, M., 1959, 468 pp. (in Russian) | MR

[9] Kirillova F. M., “Relative controllability of linear dynamic systems with delay”, Doklady AN SSSR, 174:6 (1967), 1260–1263 (in Russian) | MR | Zbl

[10] Bellman R., Kuk K., Differential-Difference Equations, Mir, M., 1967, 547 pp. (in Russian) | MR

[11] Natanson I. P., Theory of Functions of a Real Variable, Nauka, M., 1974, 468 pp. (in Russian) | MR