Impulsive action on the three-layered circular cylindrical shells in elastic media
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 202-209.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers oscillations of three-layered cylindrical shells filled by an elastic medium. External loads are impulsive. The Kirchhoff–Love's hypotheses are assumed for thin isotropic bearing layers. The work of the transverse shear and thickness reduction in the thick filler is taken into account. Variations in displacements in the transverse coordinate are assumed to be linear. The conditions of continuous displacements are used on the contact boundary. The reaction of the inertia-free elastic filler is described in terms of the Winkler's model. A number of analytical solutions have been obtained and analyzed numerically.
@article{ISU_2015_15_2_a10,
     author = {D. V. Leonenko and E. I. Starovoitov},
     title = {Impulsive action on the three-layered circular cylindrical shells in elastic media},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {202--209},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a10/}
}
TY  - JOUR
AU  - D. V. Leonenko
AU  - E. I. Starovoitov
TI  - Impulsive action on the three-layered circular cylindrical shells in elastic media
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 202
EP  - 209
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a10/
LA  - ru
ID  - ISU_2015_15_2_a10
ER  - 
%0 Journal Article
%A D. V. Leonenko
%A E. I. Starovoitov
%T Impulsive action on the three-layered circular cylindrical shells in elastic media
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 202-209
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a10/
%G ru
%F ISU_2015_15_2_a10
D. V. Leonenko; E. I. Starovoitov. Impulsive action on the three-layered circular cylindrical shells in elastic media. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 2, pp. 202-209. http://geodesic.mathdoc.fr/item/ISU_2015_15_2_a10/

[1] Bolotin V. V., Novichkov Yu. N., Mechanics of Layered Structures, Mashinostroenie, M., 1980, 375 pp. (in Russian)

[2] Gorshkov A. G., Starovoitov E. I., Yarovaya A. V., Mechanics of Layer Viscoelastoplastic Construction Elements, Fizmatlit, M., 2005, 576 pp. (in Russian)

[3] Starovoitov E. I., Yarovaya A. V., Leonenko D. V., Deformation of Three-Layer Construction Elements on the Elastic Foundation, Fizmatlit, M., 2006, 380 pp. (in Russian)

[4] Starovoitov E. I., Nagiyev F. B., Foundations of the theory of elasticity, plasticity and viscoelasticity, Apple Academic Press, Toronto–New Jersey, 2012, 346 pp.

[5] Vlasov V. Z., Leontiev N. N., Beams, Plates and Shells on Elastic Foundation, Fizmatgiz, M., 1960, 491 pp. (in Russian)

[6] Leonenko D. V., Starovoitov E. I., “Thermoplastic strain of circular sandwich plates on an elastic base”, Mechanics of Solids, 44:5 (2009), 744–755 | DOI | MR

[7] Leonenko D. V., Starovoitov E. I., “Deformation of a three-layer elastoplastic beam on an elastic foundation”, Mechanics of Solids, 46:2 (2011), 291–298 | DOI | MR

[8] Starovoitov E. I., Dorovskaya E. P., “Bending of Rectangular Sandwich Plate on Elastic Foundation”, Engineering and Automation Problems, 2006, no. 3, 45–50 (in Russian)

[9] Starovoitov E. I., Leonenko D. V., Suleyman M., “Thermoelastic Bending of a Ring Sandwich Plate on the Elastic Foundation”, Ecological Bulletin of Research Centers of the Black Sea Economic Cooperation, 2006, no. 4, 55–62 (in Russian) | MR

[10] Gorshkov A. G., Starovoitov E. I., Yarovaya A. V., “Harmonic vibrations of a viscoelastoplastic sandwich cylindrical shell”, Intern. Appl. Mech., 37:9 (2001), 1196–1203 | DOI | Zbl

[11] Gorshkov A. G., Tarlakovskii D. V., Shukurov A. M., “Unsteady Vibrations of an Elastic Medium Bounded by Two Eccentric Spherical Surfaces”, Journal of Applied Mathematics and Mechanics, 58:2 (1994), 275–282 | DOI | MR | Zbl

[12] Kuznetsova E. L., Tarlakovskii D. V., Fedotenkov G. V., “Propagation of Unsteady Waves in an Elastic Layer”, Mechanics of solids, 45:5 (2011), 779–787 | DOI