Almost periodic at infinity solutions of difference equations
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 45-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of sequences almost periodic at infinity is introduced and studied. The necessity to consider such sequences is based on the fact that they appear in difference equations under consideration. The main results relate to the proof of almost periodicity at infinity of solutions of difference equations.
@article{ISU_2015_15_1_a6,
     author = {A. A. Ryzhkova and I. A. Trishina},
     title = {Almost periodic at infinity solutions of difference equations},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {45--49},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a6/}
}
TY  - JOUR
AU  - A. A. Ryzhkova
AU  - I. A. Trishina
TI  - Almost periodic at infinity solutions of difference equations
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 45
EP  - 49
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a6/
LA  - ru
ID  - ISU_2015_15_1_a6
ER  - 
%0 Journal Article
%A A. A. Ryzhkova
%A I. A. Trishina
%T Almost periodic at infinity solutions of difference equations
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 45-49
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a6/
%G ru
%F ISU_2015_15_1_a6
A. A. Ryzhkova; I. A. Trishina. Almost periodic at infinity solutions of difference equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 45-49. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a6/

[1] Baskakov A. G., Kaluzhina N. S., “Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Math. Notes, 92:5 (2012), 587–605 | DOI | DOI

[2] Baskakov A. G., “Theory of representations of Banach algebras, and abelian groups and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N. Y.), 137:4 (2006), 4885–5036 | DOI

[3] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI

[4] Baskakov A. G., Harmonic analysis of linear operators, Voronezh Univ. Press, Voronezh, 1987 (in Russian)

[5] Duplishheva A. Ju., “Periodic on infinity solutions of difference equations”, The Proceeding VSU. Ser. Physics. Mathematics, 2012, no. 1, 110–117 (in Russian)

[6] Baskakov A. G., “Investigation of linear differential equations by the methods of the spectral theory of difference operators and linear relations”, Russ. Math. Surv., 68:1 (2013), 69–116 | DOI | DOI

[7] Baskakov A. G., Kaluzhina N. S., Polyakov D. M., “Slowly varying at infinity semigroup of operators”, Russian Math. (Iz. VUZ), 58:7 (2014), 1–10

[8] Levitan B. M., Gikov V. V., Almost-periodic functions and differential equations, Moscow Univ. Press, M., 1978, 204 pp. (in Russian)