@article{ISU_2015_15_1_a6,
author = {A. A. Ryzhkova and I. A. Trishina},
title = {Almost periodic at infinity solutions of difference equations},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {45--49},
year = {2015},
volume = {15},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a6/}
}
TY - JOUR AU - A. A. Ryzhkova AU - I. A. Trishina TI - Almost periodic at infinity solutions of difference equations JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 45 EP - 49 VL - 15 IS - 1 UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a6/ LA - ru ID - ISU_2015_15_1_a6 ER -
A. A. Ryzhkova; I. A. Trishina. Almost periodic at infinity solutions of difference equations. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 45-49. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a6/
[1] Baskakov A. G., Kaluzhina N. S., “Beurling's theorem for functions with essential spectrum from homogeneous spaces and stabilization of solutions of parabolic equations”, Math. Notes, 92:5 (2012), 587–605 | DOI | DOI
[2] Baskakov A. G., “Theory of representations of Banach algebras, and abelian groups and semigroups in the spectral analysis of linear operators”, J. Math. Sci. (N. Y.), 137:4 (2006), 4885–5036 | DOI
[3] Baskakov A. G., Krishtal I. A., “Harmonic analysis of causal operators and their spectral properties”, Izv. Math., 69:3 (2005), 439–486 | DOI | DOI
[4] Baskakov A. G., Harmonic analysis of linear operators, Voronezh Univ. Press, Voronezh, 1987 (in Russian)
[5] Duplishheva A. Ju., “Periodic on infinity solutions of difference equations”, The Proceeding VSU. Ser. Physics. Mathematics, 2012, no. 1, 110–117 (in Russian)
[6] Baskakov A. G., “Investigation of linear differential equations by the methods of the spectral theory of difference operators and linear relations”, Russ. Math. Surv., 68:1 (2013), 69–116 | DOI | DOI
[7] Baskakov A. G., Kaluzhina N. S., Polyakov D. M., “Slowly varying at infinity semigroup of operators”, Russian Math. (Iz. VUZ), 58:7 (2014), 1–10
[8] Levitan B. M., Gikov V. V., Almost-periodic functions and differential equations, Moscow Univ. Press, M., 1978, 204 pp. (in Russian)