Comparison standards method for solving of the multi-criterion discrete optimization problems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 22-27

Voir la notice de l'article provenant de la source Math-Net.Ru

Research results of management and planning problems show that in real statement these problems are multi-criterion. For effective solution to these problems it is necessary to construct multi-criterion mathematical model and then it is necessary to optimize it, beforehand selecting the most appropriate method for this purpose. Proposed approach for multi criteria discrete optimization problems is based on the concepts of measurement standards and distances. With the help of this method the multi-criterion discrete optimization problem solution is considered.
@article{ISU_2015_15_1_a2,
     author = {A. A. Budaeva},
     title = {Comparison standards method for solving of the multi-criterion discrete optimization problems},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {22--27},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a2/}
}
TY  - JOUR
AU  - A. A. Budaeva
TI  - Comparison standards method for solving of the multi-criterion discrete optimization problems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 22
EP  - 27
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a2/
LA  - ru
ID  - ISU_2015_15_1_a2
ER  - 
%0 Journal Article
%A A. A. Budaeva
%T Comparison standards method for solving of the multi-criterion discrete optimization problems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 22-27
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a2/
%G ru
%F ISU_2015_15_1_a2
A. A. Budaeva. Comparison standards method for solving of the multi-criterion discrete optimization problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 22-27. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a2/