Models of information $K$-channels with memory
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 106-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analysis of non-binary ($K$-ary, $K\geqslant3$) information channels (IC) with memory as complex stochastic structures is rather complicated mathematically. Of significant interest is the synthesis of simplified mathematical models for such channels that allow clarifying relatively simply the most important regularities occurring in real processes. Modeling of IC ($K$-channels) with memory is a vital problem that has both theoretical and practical importance. In this paper models of discrete $K$-channels with memory are presented, their graphs of transition probabilities for various operating conditions built, and probabilities of outcomes of reception for symbols of the used alphabet estimated.
@article{ISU_2015_15_1_a14,
     author = {A. A. L'vov and M. S. Svetlov and Yu. A. Ulyanina},
     title = {Models of information $K$-channels with memory},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {106--112},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a14/}
}
TY  - JOUR
AU  - A. A. L'vov
AU  - M. S. Svetlov
AU  - Yu. A. Ulyanina
TI  - Models of information $K$-channels with memory
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 106
EP  - 112
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a14/
LA  - ru
ID  - ISU_2015_15_1_a14
ER  - 
%0 Journal Article
%A A. A. L'vov
%A M. S. Svetlov
%A Yu. A. Ulyanina
%T Models of information $K$-channels with memory
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 106-112
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a14/
%G ru
%F ISU_2015_15_1_a14
A. A. L'vov; M. S. Svetlov; Yu. A. Ulyanina. Models of information $K$-channels with memory. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 106-112. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a14/

[1] Pimentel C., Blake F., “Modeling Burst Channels Using Partitioned Fritchman's Markov Models”, IEEE Transactions on Vehicular Technology, 47 (1998), 885–899 | DOI

[2] Vasiliev K. K., Mathematical Modeling of Communication Systems, Ulyanovsk State Tech. Univ. Press, Ulyanovsk, 2008, 170 pp. (in Russian)

[3] Vasiliev K. K., Theory of telecommunications, Ulyanovsk State Tech. Univ. Press, Ulyanovsk, 2008, 452 pp. (in Russian)

[4] Gladkih A. A., Fundamentals of the theory of soft decoding redundant codes in the erasure channel communication, Ulyanovsk State Tech. Univ. Press, Ulyanovsk, 2010, 380 pp. (in Russian)

[5] Levin B. R., Theoretical Foundations of Statistical Radio Engineering, v. 1, Sov. Radio, M., 1974, 552 pp. (in Russian)

[6] Fink L. M., Theory of discrete message transmission, Sov. Radio, M., 1970, 728 pp. (in Russian)

[7] L'vov A. A., Svetlov M. S., Ulyanina Yu. A., “Analysis of pseudo-random sequences in the non-binary communication channels”, Naukowa mysl informacyjnej powieki-2014. Techniczne nauki, Materialy X Miedzynarodowej naukowi-praktycznej konferencji (Polska, Przemysl, 2014), 37–41