Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2015_15_1_a13, author = {I. A. Pankratov}, title = {Analytical solution of equations of near-circular spacecraft's orbit orientation}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {97--105}, publisher = {mathdoc}, volume = {15}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a13/} }
TY - JOUR AU - I. A. Pankratov TI - Analytical solution of equations of near-circular spacecraft's orbit orientation JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2015 SP - 97 EP - 105 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a13/ LA - ru ID - ISU_2015_15_1_a13 ER -
%0 Journal Article %A I. A. Pankratov %T Analytical solution of equations of near-circular spacecraft's orbit orientation %J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics %D 2015 %P 97-105 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a13/ %G ru %F ISU_2015_15_1_a13
I. A. Pankratov. Analytical solution of equations of near-circular spacecraft's orbit orientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a13/
[1] Chelnokov Yu. N., “Application of quaternions in the theory of orbital motion of an artificial satellite, I”, Cosmic Research, 30:6 (1992), 612–621
[2] Chelnokov Yu. N., “The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field, I”, Cosmic Research, 39:5 (2001), 470–484 | DOI
[3] Chelnokov Yu. N., “The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field, II”, Cosmic Research, 41:1 (2003), 85–99 | DOI
[4] Chelnokov Yu. N., Pankratov I. A., “The reorientation of circular spacecraft's orbit with three points of switching control”, Mechatronics, automation, control, 2011, no. 1, 70–73 (in Russian)
[5] Abalakin V. K., Aksenov E. P., Grebennikov E. A., Demin V. G., Ryabov Yu. A., Reference guide on celestial mechanics and astrodynamics, Nauka, M., 1976, 864 pp. (in Russian)
[6] Branets V. N., Shmyglevskii I. P., Use of quaternions in the problems of orientation of solid bodies, Nauka, M., 1973, 320 pp. (in Russian)
[7] Molodenkov A. V., “On the solution of the Darboux problem”, Mechanics of Solids, 42:2 (2007), 167–176 | DOI
[8] Chelnokov Yu. N., “Optimal reorientation of spacecraft's orbit through thrust orthogonal to the plane of orbit”, Mathematics. Mechanics, 8, Saratov Univ. Press, Saratov, 2006, 231–234 (in Russian)
[9] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “Solution of a problem of spacecraft's orbit optimal reorientation using quaternion equations of orbital system of coordinates orientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(1) (2013), 84–92 (in Russian)
[10] Pankratov I. A., Chelnokov Yu. N., “Analytical solution of differential equations of circular spacecraft's orbit orientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:1(1) (2011), 83–89 (in Russian)
[11] Nayfeh A. H., Introduction to perturbation techniques, John Wiley Sons, New York–Chichester–Brisbane–Toronto, 1981, 519 pp.
[12] Chelnokov Yu. N., Quaterion and bi-quaternion models and methods of solid state mechanics and their applications. Geometry and kinematics of motion, Fizmatlit, M., 2006, 512 pp. (in Russian)
[13] Zaitsev V. F., Polianin A. D., Handbook of ordinary differential equations, Fizmatlit, M., 2001, 576 pp. (in Russian)