Analytical solution of equations of near-circular spacecraft's orbit orientation
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 97-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal reorientation of spacecraft's orbit with a limited control, orthogonal to the plane of spacecraft's orbit, is considered. An approximate analytical solution of differential equations of near-circular spacecraft's orbit orientation by control, that is permanent on adjacent parts of the active spacecraft's motion, is obtained.
@article{ISU_2015_15_1_a13,
     author = {I. A. Pankratov},
     title = {Analytical solution of equations of near-circular spacecraft's orbit orientation},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {97--105},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a13/}
}
TY  - JOUR
AU  - I. A. Pankratov
TI  - Analytical solution of equations of near-circular spacecraft's orbit orientation
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 97
EP  - 105
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a13/
LA  - ru
ID  - ISU_2015_15_1_a13
ER  - 
%0 Journal Article
%A I. A. Pankratov
%T Analytical solution of equations of near-circular spacecraft's orbit orientation
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 97-105
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a13/
%G ru
%F ISU_2015_15_1_a13
I. A. Pankratov. Analytical solution of equations of near-circular spacecraft's orbit orientation. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 97-105. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a13/

[1] Chelnokov Yu. N., “Application of quaternions in the theory of orbital motion of an artificial satellite, I”, Cosmic Research, 30:6 (1992), 612–621

[2] Chelnokov Yu. N., “The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field, I”, Cosmic Research, 39:5 (2001), 470–484 | DOI

[3] Chelnokov Yu. N., “The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field, II”, Cosmic Research, 41:1 (2003), 85–99 | DOI

[4] Chelnokov Yu. N., Pankratov I. A., “The reorientation of circular spacecraft's orbit with three points of switching control”, Mechatronics, automation, control, 2011, no. 1, 70–73 (in Russian)

[5] Abalakin V. K., Aksenov E. P., Grebennikov E. A., Demin V. G., Ryabov Yu. A., Reference guide on celestial mechanics and astrodynamics, Nauka, M., 1976, 864 pp. (in Russian)

[6] Branets V. N., Shmyglevskii I. P., Use of quaternions in the problems of orientation of solid bodies, Nauka, M., 1973, 320 pp. (in Russian)

[7] Molodenkov A. V., “On the solution of the Darboux problem”, Mechanics of Solids, 42:2 (2007), 167–176 | DOI

[8] Chelnokov Yu. N., “Optimal reorientation of spacecraft's orbit through thrust orthogonal to the plane of orbit”, Mathematics. Mechanics, 8, Saratov Univ. Press, Saratov, 2006, 231–234 (in Russian)

[9] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “Solution of a problem of spacecraft's orbit optimal reorientation using quaternion equations of orbital system of coordinates orientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(1) (2013), 84–92 (in Russian)

[10] Pankratov I. A., Chelnokov Yu. N., “Analytical solution of differential equations of circular spacecraft's orbit orientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:1(1) (2011), 83–89 (in Russian)

[11] Nayfeh A. H., Introduction to perturbation techniques, John Wiley Sons, New York–Chichester–Brisbane–Toronto, 1981, 519 pp.

[12] Chelnokov Yu. N., Quaterion and bi-quaternion models and methods of solid state mechanics and their applications. Geometry and kinematics of motion, Fizmatlit, M., 2006, 512 pp. (in Russian)

[13] Zaitsev V. F., Polianin A. D., Handbook of ordinary differential equations, Fizmatlit, M., 2001, 576 pp. (in Russian)