On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 79-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present study is devoted to problem of propagating surfaces of weak and strong discontinuities of translational displacements, microrotations and temperature in micropolar (MP) thermoelastic (TE) continua. Problems of propagation of weak discontinuities in type-I MPTE continua are discussed. Geometrical and kinematical compatibility conditions due to Hadamard and Thomas are used to study possible wave surfaces of weak discontinuities. Weak discontinuities are discriminated according to spatial orientations of the discontinuities polarization vectors (DPVs). It is shown that the surfaces of weak discontinuities can propagate exist without weak discontinuities of the temperature field. Second part of the paper is concerned the discussions of the propagating surfaces of strong discontinuities of field variables in type-II MPTE continua. Constitutive relations for hyperbolic thermoelastic type-II micropolar continuum is derived by the field theory. The special form of the first variation of the action integral is used in order to obtained $4$-covariant jump conditions on wave surfaces. Three-dimensional form of the jump conditions on the surface of a strong discontinuity of thermoelastic field are derived from $4$-covariant form.
@article{ISU_2015_15_1_a11,
     author = {V. A. Kovalev and E. V. Murashkin and Yu. N. Radayev},
     title = {On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {79--89},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a11/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - E. V. Murashkin
AU  - Yu. N. Radayev
TI  - On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 79
EP  - 89
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a11/
LA  - en
ID  - ISU_2015_15_1_a11
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A E. V. Murashkin
%A Yu. N. Radayev
%T On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 79-89
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a11/
%G en
%F ISU_2015_15_1_a11
V. A. Kovalev; E. V. Murashkin; Yu. N. Radayev. On weak discontinuities and jump equations on wave surfaces in micropolar thermoelastic continua. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 79-89. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a11/

[1] Cosserat E., Cosserat F., Theories of Deformable Bodies, Scientific Library A. Hermann et Fils, Paris, 1909, 242 pp.

[2] Green A. E., Naghdi P. M., “On Undamped Heat Waves in an Elastic Solid”, J. Therm. Stress, 15 (1992), 253–264 | DOI

[3] Green A. E., Naghdi P. M., “Thermoelasticity without Energy Dissipation”, J. Elasticity, 31 (1993), 189–208 | DOI

[4] Radayev Yu. N., Semenov D. A., “Harmonic Coupled CTE-Thermoelastic Waves in a Free Cylindrical Waveguide”, Vestn. Samar. Gos. Univ. Natural sciences ser., 2008, no. 8/1(67), 411–459 (in Russian)

[5] Kovalev V. A., Radayev Yu. N., Semenov D. A., “Coupled Dynamic Problems in Hyperbolic Thermoelasticity”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 10:4(2) (2009), 94–128 (in Russian)

[6] Kovalev V. A., Radayev Yu. N., “Wavenumbers of Plane GNIII-Thermoelastic Waves and Inequality, Providing Their Normality”, Izv. Saratov Univ. (N. S.), Ser. Math. Mech. Inform., 10:3 (2010), 46–53 (in Russian)

[7] Kovalev V. A., Radayev Yu. N., Wave Problems of Field Theory and Thermomechanics, Saratov. Univ. Press, Saratov, 2010, 328 pp. (in Russian)

[8] Thomas T. Y., Plastic Flow and Fracture in Solids, Academic Press, New York, 1961, 271 pp.

[9] Nowacki W., Theory of Asymmetric Elasticity, Pergamon Press, Oxford, 1986, 384 pp.

[10] Mindlin R. D., Tiersten H. F., “Effects of couple-stresses in linear elasticity”, Arch. for Rat. Mech. and Anal., 11:1 (1962), 415–448 | DOI

[11] Eringen A. C., Microcontinuum field theories, v. 1, Foundations and Solids, Springer, Berlin–Heidelberg–New York, 1999, 325 pp.

[12] Rankine W. J. M., “On the thermodynamic theory of waves of finite longitudinal disturbance”, Proc. of the Royal Society of London, 18, The Royal Society, London, 1870, 80–83 | DOI

[13] Hugoniot P. H., “Sur la propagation du mouvement dans les corps et specialement dans les gaz parfaits”, J. Ecole Polytechnique, CLVII (1887), 3–98