On variety of semigroups of relations with operation of reflexive double cylindrification
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 13-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the basis of identities for the variety generated by semigroups of relations with the operation of reflexive double cylindrification is found.
@article{ISU_2015_15_1_a1,
     author = {D. A. Bredikhin and A. V. Popovich},
     title = {On variety of semigroups of relations with operation of reflexive double cylindrification},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {13--22},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a1/}
}
TY  - JOUR
AU  - D. A. Bredikhin
AU  - A. V. Popovich
TI  - On variety of semigroups of relations with operation of reflexive double cylindrification
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2015
SP  - 13
EP  - 22
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a1/
LA  - ru
ID  - ISU_2015_15_1_a1
ER  - 
%0 Journal Article
%A D. A. Bredikhin
%A A. V. Popovich
%T On variety of semigroups of relations with operation of reflexive double cylindrification
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2015
%P 13-22
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a1/
%G ru
%F ISU_2015_15_1_a1
D. A. Bredikhin; A. V. Popovich. On variety of semigroups of relations with operation of reflexive double cylindrification. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 15 (2015) no. 1, pp. 13-22. http://geodesic.mathdoc.fr/item/ISU_2015_15_1_a1/

[1] Tarski A., “On the calculus of relations”, J. Symbolic Logic, 1941, no. 4, 73–89 | DOI

[2] Schein B. M., “Relation algebras and function semigroups”, Semigroup Forum, 1:1 (1970), 1–62 | DOI

[3] Bredikhin D. A., “Relation algebras with diophantine operations”, Doklady Math., 57:3 (1998), 435–436

[4] Bredikhin D. A., “On quasi-identities of relation algebras with diophantine operations”, Siberian Math. J., 38:1 (1997), 23–33 | DOI

[5] Böner P., Pöschel F. R., “Clones of operations on binary relations”, Contributions to general algebras, 7 (1991), 50–70

[6] Henkin L., Monk J. D., Tarski A., Cylindric Algebras, North-Holland, Amsterdam, 1971

[7] Kuhn S., “The domino relations : flattening a two-dimensional logic”, J. Philosophical Logic, 18 (1989), 173–195 | DOI

[8] Venema Y., Many-dimansional modal logic, Universiteit van Amsterdam, Amsterdam, 1989

[9] Jónsson B., “Varieties of relation algebras”, Algebra Univers., 54 (1982), 273–299 | DOI

[10] Schein B. M., “Representation of involuted semigroups by binary relations”, Fundamenta Math., 82:2 (1974), 121–141

[11] Bredikhin D. A., “On varieties of semigroups of relations with operations of cylindrification”, Contributions to General Algebra, 16 (2005), 1–6

[12] Bredikhin D. A. Popovich A. V., “Identities of semigroups of relations with an operator of reflexive double cylindrification”, Russian Math. (Iz. VUZ), 58:8 (2014), 74–77

[13] Bredikhin D. A., “The equational theory of algebras of relations with positive operations”, Russian Math. (Iz. VUZ), 37:3 (1993), 21–28