Riescz Basis Property of Eigen and Associated Functions of Integral Operators with Discontinuous Kernels, Containing Involution
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 558-569.

Voir la notice de l'article provenant de la source Math-Net.Ru

For invertible integral operator which kernel is discontinuous on the diagonals of the unit square Riescz basis property of its eigen and associated functions in $L_2[0,1]$ is proved.
@article{ISU_2014_14_4_a9,
     author = {V. P. Kurdumov and A. P. Khromov},
     title = {Riescz {Basis} {Property} of {Eigen} and {Associated} {Functions} of {Integral} {Operators} with {Discontinuous} {Kernels,} {Containing} {Involution}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {558--569},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a9/}
}
TY  - JOUR
AU  - V. P. Kurdumov
AU  - A. P. Khromov
TI  - Riescz Basis Property of Eigen and Associated Functions of Integral Operators with Discontinuous Kernels, Containing Involution
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 558
EP  - 569
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a9/
LA  - ru
ID  - ISU_2014_14_4_a9
ER  - 
%0 Journal Article
%A V. P. Kurdumov
%A A. P. Khromov
%T Riescz Basis Property of Eigen and Associated Functions of Integral Operators with Discontinuous Kernels, Containing Involution
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 558-569
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a9/
%G ru
%F ISU_2014_14_4_a9
V. P. Kurdumov; A. P. Khromov. Riescz Basis Property of Eigen and Associated Functions of Integral Operators with Discontinuous Kernels, Containing Involution. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 558-569. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a9/

[1] Khromov A. P., “Inversion of integral operators with kernels discontinuous on the diagonal”, Math. Notes, 64:6 (1998), 804–813 | DOI | DOI | MR | Zbl

[2] Kornev V. V., Khromov A. P., “Equiconvergence of expansions in eigenfunctions of integral operators with kernels that can have discontinuities on the diagonals”, Sb. Math., 192:10 (2001), 1451–1469 | DOI | DOI | MR | Zbl

[3] Khromov A. P., “Integral operators with kernels that are discontinuous on broken lines”, Sb. Math., 197:11 (2006), 1669–1696 | DOI | DOI | MR | Zbl

[4] Kurdyumov V. P., Khromov A. P., “Riesz bases of eigenfunctions of an integral operator with a variable limit of integration”, Math. Notes, 76:1 (2004), 90–102 | DOI | DOI | MR | Zbl

[5] Kurdyumov V. P., Khromov A. P., “Riesz bases of eigenfunctions of integral operators with kernels discontinuous on the diagonals”, Izv. Math., 76:6 (2012), 1175–1189 | DOI | DOI | MR | Zbl

[6] Lyusternik L. A., Sobolev V. I., The elements of functional analysis, Nauka, M., 1965 (in Russian) | MR

[7] Hromov A. P., “Equiconvergence theorems for integrodifferential and integral operators”, Math. USSR-Sb., 42:3 (1982), 331–355 | DOI | MR