Uniqueness of Solution of the Inverse Scattering Problem for Various Order Differential Equation on the Simplest Noncompact Graph with Cycle
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 542-549.

Voir la notice de l'article provenant de la source Math-Net.Ru

An inverse scattering problem is studied for variable orders differential operators on simplest noncompact graph with cycle. A uniqueness theorem of recovering coefficients of operators from the scattering data is provided.
@article{ISU_2014_14_4_a7,
     author = {M. Yu. Ignatyev},
     title = {Uniqueness of {Solution} of the {Inverse} {Scattering} {Problem} for {Various} {Order} {Differential} {Equation} on the {Simplest} {Noncompact} {Graph} with {Cycle}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {542--549},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a7/}
}
TY  - JOUR
AU  - M. Yu. Ignatyev
TI  - Uniqueness of Solution of the Inverse Scattering Problem for Various Order Differential Equation on the Simplest Noncompact Graph with Cycle
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 542
EP  - 549
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a7/
LA  - ru
ID  - ISU_2014_14_4_a7
ER  - 
%0 Journal Article
%A M. Yu. Ignatyev
%T Uniqueness of Solution of the Inverse Scattering Problem for Various Order Differential Equation on the Simplest Noncompact Graph with Cycle
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 542-549
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a7/
%G ru
%F ISU_2014_14_4_a7
M. Yu. Ignatyev. Uniqueness of Solution of the Inverse Scattering Problem for Various Order Differential Equation on the Simplest Noncompact Graph with Cycle. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 542-549. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a7/

[1] Langese J., Leugering G., Schmidt J., Modeling, analysis and control of dynamic elastic multi-link structures, Birkhauser, Boston, 1994 | MR

[2] Kuchment P., “Quantum graphs. Some basic structures”, Waves Random Media, 14 (2004), S107–S128 | DOI | MR | Zbl

[3] Pokornyi Yu., Borovskikh A., “Differential equations on networks (geometric graphs)”, J. Math. Sci. (N.Y.), 119:6 (2004), 691–718 | DOI | MR | Zbl

[4] Pokornyi Yu. V., Beloglazova T. V., Dikareva E. V., Perlovskaya T. V., “Green function for a locally interacting system of ordinary equations of different orders”, Math. Notes, 74:1 (2003), 141–143 | DOI | DOI | MR

[5] Yurko V. A., “Recovering Differential Operators on Star-Type Graphs with Different Orders on Different Edges”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(2) (2013), 112–116 (in Russian) | Zbl

[6] Bondarenko N., An inverse problem for the differential operator on the graph with a cycle with different orders on different edges, arXiv: 1309.5360v3

[7] Beals R., “The inverse problem for ordinary differential operators on the line”, Amer. J. Math., 107 (1985), 281–366 | DOI | MR | Zbl

[8] Yurko V. A., Introduction to the Theory of the Inverse Spectral Problems, Fizmatlit, M., 2007, 384 pp. (in Russian) | Zbl

[9] Leont'ev A. F., Entire Functions. Series of Exponentials, Fizmatlit, M., 1983, 176 pp. (in Russian) | MR