MRA on Local Fields of Positive Characteristic
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 511-518

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the local field of positive characteristic is a vector space over a finite field.
@article{ISU_2014_14_4_a3,
     author = {A. M. Vodolazov and S. F. Lukomskii},
     title = {MRA on {Local} {Fields} of {Positive} {Characteristic}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {511--518},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a3/}
}
TY  - JOUR
AU  - A. M. Vodolazov
AU  - S. F. Lukomskii
TI  - MRA on Local Fields of Positive Characteristic
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 511
EP  - 518
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a3/
LA  - ru
ID  - ISU_2014_14_4_a3
ER  - 
%0 Journal Article
%A A. M. Vodolazov
%A S. F. Lukomskii
%T MRA on Local Fields of Positive Characteristic
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 511-518
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a3/
%G ru
%F ISU_2014_14_4_a3
A. M. Vodolazov; S. F. Lukomskii. MRA on Local Fields of Positive Characteristic. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 511-518. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a3/