MRA on Local Fields of Positive Characteristic
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 511-518.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that the local field of positive characteristic is a vector space over a finite field.
@article{ISU_2014_14_4_a3,
     author = {A. M. Vodolazov and S. F. Lukomskii},
     title = {MRA on {Local} {Fields} of {Positive} {Characteristic}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {511--518},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a3/}
}
TY  - JOUR
AU  - A. M. Vodolazov
AU  - S. F. Lukomskii
TI  - MRA on Local Fields of Positive Characteristic
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 511
EP  - 518
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a3/
LA  - ru
ID  - ISU_2014_14_4_a3
ER  - 
%0 Journal Article
%A A. M. Vodolazov
%A S. F. Lukomskii
%T MRA on Local Fields of Positive Characteristic
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 511-518
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a3/
%G ru
%F ISU_2014_14_4_a3
A. M. Vodolazov; S. F. Lukomskii. MRA on Local Fields of Positive Characteristic. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 511-518. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a3/

[1] Taibleson M. H., Fourier Analysis on Local Fields, Princeton Univ. Press, Princeton, 1975 | MR | Zbl

[2] Jiang H., Li D., Jin N., “Multiresolution analysis on local fields”, J. Math. Anal. Appl., 294 (2004), 523–532 | DOI | MR | Zbl

[3] Behera B., Jahan Q., “Multiresolution analysis on local fields and characterization of scaling functions”, Adv. Pure Appl. Math., 3 (2012), 181–202 | DOI | MR | Zbl

[4] Behera B., Jahan Q., “Biorthogonal Wavelets on Local Fields of Positive Characteristic”, Communications in Math. Anal., 15:2 (2013), 52–75 | MR | Zbl

[5] Behera B., Jahan Q., “Wavelet packets and wavelet frame packets on local fields of positive characteristic”, J. Math. Anal. Appl., 395 (2012), 1–14 | DOI | MR | Zbl

[6] Lidl R., Niederreiter H., Finite fields, Encyclopedia Math. Appl., 20, Addison-Wesley, Reading, Mass., 1983 | MR | Zbl | Zbl

[7] Gelfand I. M., Graev M. I., Piatetski-Shapiro I. I., Representation Theory and Automorphic Functions, Nauka, M., 1966 (in Russian) | MR

[8] Lukomskii S. F., “Step refinable functions and orthogonal MRA on Vilenkin groups”, J. Fourier Anal. Appl., 20:1 (2014), 42–65 | DOI | MR

[9] Lukomskii S. F., Trees in Wavelet analysis on Vilenkin groups, arXiv: 1303.5635

[10] Farkov Yu. A., “Orthogonal wavelets on direct products of cyclic groups”, Math. Notes, 82:6 (2007), 843–859 | DOI | DOI | MR | Zbl