Regularization of Abel Equation with the Use of Discontinuous Steklov Operator
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 599-603.

Voir la notice de l'article provenant de la source Math-Net.Ru

For getting uniform approximations of the exact solution of Abel equation with an approximate right-hand part a simply constructed family of integral operators is suggested.
@article{ISU_2014_14_4_a15,
     author = {G. V. Khromova},
     title = {Regularization of {Abel} {Equation} with the {Use} of {Discontinuous} {Steklov} {Operator}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {599--603},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a15/}
}
TY  - JOUR
AU  - G. V. Khromova
TI  - Regularization of Abel Equation with the Use of Discontinuous Steklov Operator
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 599
EP  - 603
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a15/
LA  - ru
ID  - ISU_2014_14_4_a15
ER  - 
%0 Journal Article
%A G. V. Khromova
%T Regularization of Abel Equation with the Use of Discontinuous Steklov Operator
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 599-603
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a15/
%G ru
%F ISU_2014_14_4_a15
G. V. Khromova. Regularization of Abel Equation with the Use of Discontinuous Steklov Operator. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 599-603. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a15/

[1] Khromov A. P., Khromova G. V., “One modification of the Steklov operator”, Modern problems of function theory and their applications, Abstracts of the 15-th Saratov winter school, Saratov Univ. Press, Saratov, 2010, 181 (in Russian)

[2] Khromova G. V., “On a technique for constructing regularization methods for equations of the first kind”, Comput. Math. Math. Phys., 40:7 (2000), 955–960 | MR | Zbl

[3] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, Nauka, M., 1978, 206 pp. (in Russian) | MR

[4] Ivanov V. K., “Fredholm integral equation of the first kind”, Differ. Equations, III:3 (1967), 410–421 (in Russian) | MR | Zbl

[5] Khromova G. V., “Error estimates of approximate solutions to equations of the first kind”, Doklady Math., 63:3 (2001), 390–394 | MR | MR | Zbl

[6] Khromova G. V., “On the approximate solutions of the Abel's equation”, Vestnik Moskovskogo universiteta. Ser. 15, 2001, no. 4, 5–9 (in Russian)