Regularization of Abel Equation with the Use of Discontinuous Steklov Operator
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 599-603

Voir la notice de l'article provenant de la source Math-Net.Ru

For getting uniform approximations of the exact solution of Abel equation with an approximate right-hand part a simply constructed family of integral operators is suggested.
@article{ISU_2014_14_4_a15,
     author = {G. V. Khromova},
     title = {Regularization of {Abel} {Equation} with the {Use} of {Discontinuous} {Steklov} {Operator}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {599--603},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a15/}
}
TY  - JOUR
AU  - G. V. Khromova
TI  - Regularization of Abel Equation with the Use of Discontinuous Steklov Operator
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 599
EP  - 603
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a15/
LA  - ru
ID  - ISU_2014_14_4_a15
ER  - 
%0 Journal Article
%A G. V. Khromova
%T Regularization of Abel Equation with the Use of Discontinuous Steklov Operator
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 599-603
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a15/
%G ru
%F ISU_2014_14_4_a15
G. V. Khromova. Regularization of Abel Equation with the Use of Discontinuous Steklov Operator. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 599-603. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a15/