About the Norms of Interpolation Processes with Fixed Nodes
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 590-595.

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of study is interpolating rational Lagrange functions. The aim of the research — the study of approximation properties of these functions in the space of square integrated functions. In the introduction the relevance of the research is indicated, references to some works related to this article are given. We also describe the construction of the apparatus of approximation — interpolating rational Lagrange functions. In the main part the norm of the interpolating rational function in the space of the square integrated functions is calculated. This enabled us to estimate the error of the approximation of an arbitrary function by interpolating rational Lagrange functions in the space of square integrated functions in terms of best uniform rational approximation of this function. The results can be used for further investigation of the properties of interpolating rational functions and their approximations in various functional spaces.
@article{ISU_2014_14_4_a13,
     author = {K. A. Smotritski and E. V. Dirvuk},
     title = {About the {Norms} of {Interpolation} {Processes} with {Fixed} {Nodes}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {590--595},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a13/}
}
TY  - JOUR
AU  - K. A. Smotritski
AU  - E. V. Dirvuk
TI  - About the Norms of Interpolation Processes with Fixed Nodes
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 590
EP  - 595
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a13/
LA  - ru
ID  - ISU_2014_14_4_a13
ER  - 
%0 Journal Article
%A K. A. Smotritski
%A E. V. Dirvuk
%T About the Norms of Interpolation Processes with Fixed Nodes
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 590-595
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a13/
%G ru
%F ISU_2014_14_4_a13
K. A. Smotritski; E. V. Dirvuk. About the Norms of Interpolation Processes with Fixed Nodes. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 590-595. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a13/

[1] Rovba E. A., Smotritski K. A., “Rational interpolation at the zeros of sine-fractions Chebyshev–Markov”, Doklady NAN Belarusi, 52:5 (2008), 11–15 (in Russian) | MR

[2] Rovba E. A., Smotritski K. A., “Convergence in the mean of rational interpolating processes in the zeroes of Bernstein fractures”, Vesti NAN Belarusi. Ser. fiz.-mat. navuk, 2005, no. 1, 6–10 (in Russian)

[3] Rovba E. A., “Orthogonal system of rational functions and quadratures of Gauss-type”, Mathematica Balkanica, 13:1–2 (1999), 187–198 | MR | MR | Zbl

[4] Rusak V. N., Rational functions as approximating tool, Minsk, 1979, 176 pp. (in Russian)