On Multiple Completeness of the Root Functions of a Certain Class of Pencils of Differential Operators with Constant Coefficients
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 574-584.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the class of pencils of ordinary differential operators of $n$-th order with constant coefficients. It is assumed that the roots of the characteristic equation of pencils from this class are simple, non-zero and lie on the same straight line passing through the origin. Sufficient conditions for $n$-fold completeness of the system of root functions of the pencils from this class in the space of summable with square functions on the main segment are formulated.
@article{ISU_2014_14_4_a11,
     author = {V. S. Rykhlov and O. V. Blinkova},
     title = {On {Multiple} {Completeness} of the {Root} {Functions} of a {Certain} {Class} of {Pencils} of {Differential} {Operators} with {Constant} {Coefficients}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {574--584},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a11/}
}
TY  - JOUR
AU  - V. S. Rykhlov
AU  - O. V. Blinkova
TI  - On Multiple Completeness of the Root Functions of a Certain Class of Pencils of Differential Operators with Constant Coefficients
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 574
EP  - 584
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a11/
LA  - ru
ID  - ISU_2014_14_4_a11
ER  - 
%0 Journal Article
%A V. S. Rykhlov
%A O. V. Blinkova
%T On Multiple Completeness of the Root Functions of a Certain Class of Pencils of Differential Operators with Constant Coefficients
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 574-584
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a11/
%G ru
%F ISU_2014_14_4_a11
V. S. Rykhlov; O. V. Blinkova. On Multiple Completeness of the Root Functions of a Certain Class of Pencils of Differential Operators with Constant Coefficients. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 574-584. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a11/

[1] Keldysh M. V., “On the completeness of the eigenfunctions of some classes of non-selfadjoint linear operators”, Russ. Math. Surveys, 26:4 (1971), 15–41 (in Russian) | DOI | MR | Zbl

[2] Naymark M. A., Linear differential operators, Nauka, M., 1969, 526 pp. (in Russian) | MR | Zbl

[3] Keldysh M. V., “On Eigenvalues and Eigenfunctions of Some Classes of Nonselfadjoint Equations”, Dokl. AN SSSR, 77:1 (1951), 11–14 (in Russian) | Zbl

[4] Khromov A. P., Finite-dimensional perturbations of Volterra operators, Dr. phys. and mat. sci. diss., Novosibirsk, 1973, 242 pp. (in Russian)

[5] Shkalikov A. A., “On completenes of eigenfunctions and associated function of an ordinary differential operator with separated irregular boundary conditions”, Funct. Anal. Appl., 10:4 (1976), 305–316 | DOI | MR

[6] Khromov A. P., “On generating functions of Volterra operators”, Math. USSR-Sb., 31:3 (1977), 409–423 | DOI | MR | Zbl

[7] Freiling G., “Zur Vollständigkeit des Systems der Eigenfunktionen und Hauptfunktionen irregulärer Operator-büschel”, Math. Z., 188:1 (1984), 55–68 | DOI | MR | Zbl

[8] Tikhomirov S. A., Finite-dimensional perturbations of Volterra integral operators in the space of vector-functions, Cand. phys. and math. sci. diss., Saratov, 1987, 126 pp. (in Russian)

[9] Shkalikov A. A., “Boundary value problems for ordinary differential equations with a parameter in the boundary conditions”, J. Soviet Math., 33:6 (1986), 1311–-1342 | DOI | MR | Zbl

[10] Gasymov M. G., Magerramov A. M., “On fold-completeness of a system of eigenfunctions and associated functions of a class of differential operators”, Dokl. AN AzSSR, 30:12 (1974), 9–12 (in Russian) | MR | Zbl

[11] Vagabov A. I., Introduction to spectral theory of differential operators, Rostov Univ. Press, Rostov on Don, 1994, 160 pp. (in Russian)

[12] Rykhlov V. S., “Completeness of eigenfunctions of one class of pencils of differential operators with constant coefficients”, Russ. Math., 53:6 (2009), 33–43 | DOI | MR | Zbl

[13] Rykhlov V. S., “On multiple completeness of the root functions for a class of the pencils of differential operators”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 10:2 (2010), 24–34 (in Russian)

[14] Rykhlov V. S., Parfilova O. V., “On multiple completeness of the root functions of the pencils of differential operators with constant coefficients”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 11:4 (2011), 45–58 (in Russian)

[15] Rykhlov V. S., “Multiple completeness of the root functions of the pencils of differential operators, the roots of the characteristic equation of which lie on a straight line”, CROMSH-2012, Proc. of the Twenty-Third Crimean Autumn Mathematical School-Symposium, Spectral and Evolutional Problems, 23, Tavricheskii nats. un-t im. V. V. Vernadskogo, Simferopol, 2013, 134–-142 (in Russian)