Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 489-497.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Tsar'kov's characterisation of finite-dimensional Banach spaces in which every bounded Chebyshev set (bounded $P$-acyclic set) is convex is extended to the asymmetrical setting.
@article{ISU_2014_14_4_a0,
     author = {A. R. Alimov},
     title = {Convexity of {Bounded} {Chebyshev} {Sets} in {Finite-dimensional} {Asymmetrically} {Normed} {Spaces}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {489--497},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 489
EP  - 497
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a0/
LA  - ru
ID  - ISU_2014_14_4_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 489-497
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a0/
%G ru
%F ISU_2014_14_4_a0
A. R. Alimov. Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 489-497. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a0/

[1] Efimov N. V., Stechkin S. B., “Some properties of Chebyshev sets”, Dokl. Akad. Nauk SSSR, 118:1 (1958), 17–19 (in Russian) | MR | Zbl

[2] Tsar'kov I. G., “Bounded Chebyshev sets in finite-dimensional Banach spaces”, Math. Notes, 36:1 (1984), 530–537 | DOI | MR | Zbl | Zbl

[3] Cobzaş S., Functional analysis in asymmetric normed spaces, Birkhäuser, Basel, 2012 | MR

[4] Akhiezer N. I., Krein M. G., Some Problems of the Theory of Moments, Gonti, Kharkov, 1938

[5] Borodin P. A., “On the convexity of $N$-Chebyshev sets”, Izv. Math., 75:5 (2011), 889–914 | DOI | DOI | MR | Zbl

[6] Berdyshev V. I., “On a question of Chebyshev sets”, Dokl. AN AzSSR, 22:9 (1966), 3–5 (in Russian) | MR | Zbl

[7] Brøndsted A., “Convex sets and Chebyshev sets, II”, Math. Scand., 18 (1966), 5–15 | MR

[8] Brown A. L., “Chebyshev sets and the shapes of convex bodies”, Methods of Functional Analysis in Approximation Theory, Proc. Intern. Conf. (Indian Inst. Techn. Bombay, 16–20 XII 1985), eds. C. A. Micchelli, Bombay, 1986, 97–121 | MR

[9] Brown A. L., “Chebyshev sets and facial systems of convex sets in finite-dimensional spaces”, Proc. Lond. Math. Soc. (3), 41 (1980), 297–339 | DOI | MR | Zbl

[10] Vlasov L. P., “Approximative properties of sets in normed linear spaces”, Russ. Math. Surv., 28:6 (1973), 1–66 | DOI | MR | Zbl | Zbl

[11] Balaganskii V. S., Vlasov L. P., “The problem of convexity of Chebyshev sets”, Russ. Math. Surv., 51:6 (1996), 125–188 | DOI | DOI | MR

[12] Tsar'kov I. G., “Compact and weakly compact Chebyshev sets in linear normed spaces”, Proc. Steklov Inst. Math., 189, 1990, 199–215 | MR | Zbl | Zbl

[13] Alimov A. R., Is every Chebyshev set convex?, Matematicheskoe prosviashchenie, Ser. 3, 1998, no. 2, 155–172 (in Russian)

[14] Alimov A. R., “On the structure of the complements of Chebyshev sets”, Funct. Anal. Appl., 35:3 (2001), 176–182 | DOI | DOI | MR | Zbl

[15] Bunt L. N. H., Bijdrage tot de theorie der convexe puntverzamelingen, Thesis, Univ. Groningen, Amsterdam, 1934

[16] Karlov M. I., Tsar'kov I. G., “Convexity and connectedness of Chebyshev sets and suns”, Fundam. Prikl. Mat., 3:4 (1997), 967–978 | MR | Zbl

[17] Klee V. L., “A characterization of convex sets”, Amer. Math. Monthly, 56 (1949), 247–249 | DOI | MR | Zbl

[18] Klee V. L., “Convex bodies and periodic homeomorphisms in Hilbert space”, Trans. Amer. Math. Soc., 74 (1953), 10–43 | DOI | MR | Zbl

[19] Madsen I. B., Milgram R. J., The classifying spaces for surgery and cobordism of manifolds, Princeton Univ. Press, Princeton, NJ, 1979 | MR | Zbl

[20] Dold A., “Homology of symmetric products and other functors of complexes”, Ann. Math., 68:1 (1958), 64–80 | DOI | MR

[21] Dold A., Thom R., “Quasifaserunger und unendliche symmetrische Produkte”, Ann. Math., 67 (1958), 239–281 | DOI | MR | Zbl

[22] Dranishnikov A. N., “Absolute $F$-valued retracts and spaces of functions in the topology of pointwise convergence”, Siberian Math. J., 27:3 (1986), 366–376 | DOI | MR | Zbl

[23] Alimov A. R., “A number of connected components of sun's complement”, East J. Approx., 1:4 (1995), 419–429 | MR | Zbl

[24] Brown A. L., “Suns in normed linear spaces which are finite-dimensional”, Math. Ann., 279 (1987), 87–101 | DOI | MR | Zbl

[25] Brown A. L., “Suns in polyhedral spaces”, Seminar of Mathem. Analysis: Proc. (Univ. Malaga and Seville (Spain), Sept. 2002–Feb. 2003), eds. D. G. Álvarez, G. Lopez Acedo, R. V. Caro, Universidad de Sevilla, Sevilla, 2003, 139–146 | MR | Zbl

[26] Alimov A. R., “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655 | DOI | DOI | MR | Zbl