Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 489-497

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Tsar'kov's characterisation of finite-dimensional Banach spaces in which every bounded Chebyshev set (bounded $P$-acyclic set) is convex is extended to the asymmetrical setting.
@article{ISU_2014_14_4_a0,
     author = {A. R. Alimov},
     title = {Convexity of {Bounded} {Chebyshev} {Sets} in {Finite-dimensional} {Asymmetrically} {Normed} {Spaces}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {489--497},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a0/}
}
TY  - JOUR
AU  - A. R. Alimov
TI  - Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 489
EP  - 497
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a0/
LA  - ru
ID  - ISU_2014_14_4_a0
ER  - 
%0 Journal Article
%A A. R. Alimov
%T Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 489-497
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a0/
%G ru
%F ISU_2014_14_4_a0
A. R. Alimov. Convexity of Bounded Chebyshev Sets in Finite-dimensional Asymmetrically Normed Spaces. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 4, pp. 489-497. http://geodesic.mathdoc.fr/item/ISU_2014_14_4_a0/