The Gradient Methods for Solving the Cauchy Problem for a Nonlinear ODE System
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 311-316

Voir la notice de l'article provenant de la source Math-Net.Ru

The article considers the Cauchy problem for a nonlinear system of ODE. This problem is reduced to the variational problem of minimizing some functional on the whole space. For this functional necessary minimum conditions are presented. On the basis of these conditions the steepest descent method and the method of conjugate directions for the considered problem are described. Numerical examples of the implementation of these methods are presented. The Cauchy problem with the system which is not solved with respect to derivatives is additionally investigated.
@article{ISU_2014_14_3_a9,
     author = {A. V. Fominyh},
     title = {The {Gradient} {Methods} for {Solving} the {Cauchy} {Problem} for a {Nonlinear} {ODE} {System}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {311--316},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a9/}
}
TY  - JOUR
AU  - A. V. Fominyh
TI  - The Gradient Methods for Solving the Cauchy Problem for a Nonlinear ODE System
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 311
EP  - 316
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a9/
LA  - ru
ID  - ISU_2014_14_3_a9
ER  - 
%0 Journal Article
%A A. V. Fominyh
%T The Gradient Methods for Solving the Cauchy Problem for a Nonlinear ODE System
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 311-316
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a9/
%G ru
%F ISU_2014_14_3_a9
A. V. Fominyh. The Gradient Methods for Solving the Cauchy Problem for a Nonlinear ODE System. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 311-316. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a9/