Optimization of Calculus Mesh for Cryobiology Problem Based on~Multidimensional Hashing Using NumPy
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 355-362.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by the example of solving the problem of constructing the temperature field in cryotherapy shows efficiency of geometric hashing performed on the basis of the NumPy package for constructing appropriate computational grid. Such an arrangement implies for each node to determine its position relative to the polygonal area of irregular shape. Such forms often modeled surfaces of internal organs. Solution build computational grid will allow for 3D visualization of the temperature field in the vicinity of cryotherapy, which will facilitate the timely temperature control.
@article{ISU_2014_14_3_a16,
     author = {V. A. Klyachin},
     title = {Optimization of {Calculus} {Mesh} for {Cryobiology} {Problem} {Based} {on~Multidimensional} {Hashing} {Using} {NumPy}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {355--362},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a16/}
}
TY  - JOUR
AU  - V. A. Klyachin
TI  - Optimization of Calculus Mesh for Cryobiology Problem Based on~Multidimensional Hashing Using NumPy
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 355
EP  - 362
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a16/
LA  - ru
ID  - ISU_2014_14_3_a16
ER  - 
%0 Journal Article
%A V. A. Klyachin
%T Optimization of Calculus Mesh for Cryobiology Problem Based on~Multidimensional Hashing Using NumPy
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 355-362
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a16/
%G ru
%F ISU_2014_14_3_a16
V. A. Klyachin. Optimization of Calculus Mesh for Cryobiology Problem Based on~Multidimensional Hashing Using NumPy. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 355-362. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a16/

[1] Cyganov D. I., Processes cryotherapy, apparatus and cryo-microwave technologies of destruction of tumors, RMAPO, M., 2004, 88 pp. (in Russian)

[2] Ternovskiy K. S., Gassanov L. G., Low temperatures in medicine, Naukova Dumka, Kiev, 1988, 280 pp. (in Russian)

[3] Buzdov B. K., “Modelling of cryodestruction of biological tissues”, Mat. Model., 23:3 (2011), 27–37 (in Russian) | MR | Zbl

[4] Alies M. Yu., Kopysov S. P., Novikov A. K., “Generation and adaption of finite element mesh for elliptic problem of order two solution”, Mat. Model., 9:2 (1997), 43–45 (in Russian)

[5] Borovikov S. N., Kryukov I. A., Ivanov I. E., “Unstructured triangular mesh generation on curved faces based on Delauney triangulation”, Mat. Model., 17:8 (2005), 31–45 (in Russian) | MR | Zbl

[6] Skvortsov A. V., Mirza N. S., Constructing and Analisys of Triangulation Algorithms, Tomsk Univ. Press, Tomsk, 2006

[7] Klyachin V. A., Shirokii A. A., “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Math. (Iz. VUZ), 56:1 (2012), 27–34 | DOI | MR | Zbl

[8] Klyachin V. A., Pabat E. A., “$C^1$-approximation of the level surfaces of functions defined on irregular grids”, Sib. Zh. Ind. Mat., 13:2 (2010), 69–78 (in Russian) | MR | Zbl

[9] Klyachin V. A., “On a multidimensional analogue of the Schwarz example”, Izv. Math., 76:4 (2012), 681–687 | DOI | DOI | MR | Zbl

[10] Preparata F. P., Shamos M., Computational Geometry: An Introduction, Springer-Verlag, Berlin–Heidelberg, 1988 | MR | MR

[11] Berg M., Cheong O., Kreveld M., Overmars M., Computational Geometry. Algorithms and Applications, Springer-Verlag, Berlin–Heidelberg, 2008 | MR

[12] Wolfson H. J., Rigoutsos I., “Geometric Hashing : An Overview”, IEEE Computational Science and Engineering, 4:4 (1997), 10–21 | DOI

[13] Ling M., Yumin L., Huiqin J., Zhongyong W., Haofei Z., “An Improved Method of Geometric Hashing Pattern Recognition”, Intern. J. Modern Education and Computer Science, 2011, no. 3, 1–7

[14] Mian A. S., Bennamoun M., Owens R., “Three-dimensional model-based object recognition and segmentation in cluttered scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (2006), 1584–601 | DOI

[15] NumPy (Accessed 21, Dec, 2013)

[16] SciPy (Accessed 21, Dec, 2013)

[17] Newton M. C., Nishino Y., Robinson I. K., “BONSU: the interactive phase retrieval suite”, J. of Applied Crystallography, 45:4 (2012), 840–843 | DOI

[18] Bryan B. A., “High-performance computing tools for the integrated assessment and modelling of social-ecological systems”, Environmental Modelling Software, 39 (2013), 295–303 | DOI

[19] Nikolsky D. N., “Development of software for the numerical solution of the evolution of the interface of various fluids in porous media complex geological structures using the package NumPy”, Uchenye zapiski Orlovskogo gosudarstvennogo universiteta. Ser. Estestvennye, technicheskie i medicinskie nauki, 2012, no. 6(1), 42–47 (in Russian)