Using Galerkin Method for Solving Linear Optimal Control Problems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 340-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear optimal control problem is considered. Duration of the controlled process is fixed. It is necessary to minimize the functional, that characterizes the energy consumption. A method of constructing an approximate solution based on the Galerkin method is proposed. Examples of numerical solutions of the problem are given.
@article{ISU_2014_14_3_a14,
     author = {I. A. Pankratov},
     title = {Using {Galerkin} {Method} for {Solving} {Linear} {Optimal} {Control} {Problems}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {340--349},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/}
}
TY  - JOUR
AU  - I. A. Pankratov
TI  - Using Galerkin Method for Solving Linear Optimal Control Problems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 340
EP  - 349
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/
LA  - ru
ID  - ISU_2014_14_3_a14
ER  - 
%0 Journal Article
%A I. A. Pankratov
%T Using Galerkin Method for Solving Linear Optimal Control Problems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 340-349
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/
%G ru
%F ISU_2014_14_3_a14
I. A. Pankratov. Using Galerkin Method for Solving Linear Optimal Control Problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 340-349. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/

[1] Pontriagin L. S., Boltianskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Nauka, M., 1983, 393 pp. (in Russian) | MR | Zbl

[2] Roitenberg Ya. N., Automatic control, Nauka, M., 1983, 393 pp. (in Russian) | MR

[3] Moiseev N. N., Numerical methods in the theory of optimal systems, Nauka, M., 1971, 424 pp. (in Russian) | MR

[4] Fedorenko R. P., Approximate solution of optimal control problems, Nauka, M., 1978, 488 pp. (in Russian) | MR | Zbl

[5] Vasil'ev F. P., Numerical methods for solving extremal problems, Nauka, M., 1988, 552 pp. (in Russian) | MR

[6] Zienkiewicz O., Morgan K., Finite elements and approximation, John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1983, 328 pp. | MR | MR

[7] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “About a problem of spacecraft's orbit optimal reorientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:3 (2012), 87–95 (in Russian) | MR

[8] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “Solution of a problem of spacecraft's orbit optimal reorientation using quaternion equations of orbital system of coordinates orientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(1) (2013), 84–92 (in Russian) | Zbl

[9] Chelnokov Yu. N., “The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field, III”, Cosmic Research, 41:5 (2003), 460–477 | DOI