@article{ISU_2014_14_3_a14,
author = {I. A. Pankratov},
title = {Using {Galerkin} {Method} for {Solving} {Linear} {Optimal} {Control} {Problems}},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {340--349},
year = {2014},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/}
}
TY - JOUR AU - I. A. Pankratov TI - Using Galerkin Method for Solving Linear Optimal Control Problems JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 340 EP - 349 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/ LA - ru ID - ISU_2014_14_3_a14 ER -
I. A. Pankratov. Using Galerkin Method for Solving Linear Optimal Control Problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 340-349. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/
[1] Pontriagin L. S., Boltianskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Nauka, M., 1983, 393 pp. (in Russian) | MR | Zbl
[2] Roitenberg Ya. N., Automatic control, Nauka, M., 1983, 393 pp. (in Russian) | MR
[3] Moiseev N. N., Numerical methods in the theory of optimal systems, Nauka, M., 1971, 424 pp. (in Russian) | MR
[4] Fedorenko R. P., Approximate solution of optimal control problems, Nauka, M., 1978, 488 pp. (in Russian) | MR | Zbl
[5] Vasil'ev F. P., Numerical methods for solving extremal problems, Nauka, M., 1988, 552 pp. (in Russian) | MR
[6] Zienkiewicz O., Morgan K., Finite elements and approximation, John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1983, 328 pp. | MR | MR
[7] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “About a problem of spacecraft's orbit optimal reorientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:3 (2012), 87–95 (in Russian) | MR
[8] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “Solution of a problem of spacecraft's orbit optimal reorientation using quaternion equations of orbital system of coordinates orientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(1) (2013), 84–92 (in Russian) | Zbl
[9] Chelnokov Yu. N., “The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field, III”, Cosmic Research, 41:5 (2003), 460–477 | DOI