Using Galerkin Method for Solving Linear Optimal Control Problems
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 340-349 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linear optimal control problem is considered. Duration of the controlled process is fixed. It is necessary to minimize the functional, that characterizes the energy consumption. A method of constructing an approximate solution based on the Galerkin method is proposed. Examples of numerical solutions of the problem are given.
@article{ISU_2014_14_3_a14,
     author = {I. A. Pankratov},
     title = {Using {Galerkin} {Method} for {Solving} {Linear} {Optimal} {Control} {Problems}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {340--349},
     year = {2014},
     volume = {14},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/}
}
TY  - JOUR
AU  - I. A. Pankratov
TI  - Using Galerkin Method for Solving Linear Optimal Control Problems
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 340
EP  - 349
VL  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/
LA  - ru
ID  - ISU_2014_14_3_a14
ER  - 
%0 Journal Article
%A I. A. Pankratov
%T Using Galerkin Method for Solving Linear Optimal Control Problems
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 340-349
%V 14
%N 3
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/
%G ru
%F ISU_2014_14_3_a14
I. A. Pankratov. Using Galerkin Method for Solving Linear Optimal Control Problems. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 340-349. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a14/

[1] Pontriagin L. S., Boltianskii V. G., Gamkrelidze R. V., Mishchenko E. F., The mathematical theory of optimal processes, Nauka, M., 1983, 393 pp. (in Russian) | MR | Zbl

[2] Roitenberg Ya. N., Automatic control, Nauka, M., 1983, 393 pp. (in Russian) | MR

[3] Moiseev N. N., Numerical methods in the theory of optimal systems, Nauka, M., 1971, 424 pp. (in Russian) | MR

[4] Fedorenko R. P., Approximate solution of optimal control problems, Nauka, M., 1978, 488 pp. (in Russian) | MR | Zbl

[5] Vasil'ev F. P., Numerical methods for solving extremal problems, Nauka, M., 1988, 552 pp. (in Russian) | MR

[6] Zienkiewicz O., Morgan K., Finite elements and approximation, John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1983, 328 pp. | MR | MR

[7] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “About a problem of spacecraft's orbit optimal reorientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:3 (2012), 87–95 (in Russian) | MR

[8] Pankratov I. A., Sapunkov Ya. G., Chelnokov Yu. N., “Solution of a problem of spacecraft's orbit optimal reorientation using quaternion equations of orbital system of coordinates orientation”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 13:1(1) (2013), 84–92 (in Russian) | Zbl

[9] Chelnokov Yu. N., “The use of quaternions in the optimal control problems of motion of the center of mass of a spacecraft in a newtonian gravitational field, III”, Cosmic Research, 41:5 (2003), 460–477 | DOI