Investigation of Harmonic Waves in the Viscoelastic Layer
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 321-328.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the study of harmonic waves in the viscoelastic layer. The properties of the material are described by the constitutive equations in the integral form. The fractional exponential function of Rabotnov is chosen as a kernel of integral operator. Two cases are considered: symmetric stress-strain state (SSS) and asymmetric SSS. The properties of modes which change in time harmonically are investigated for the purpose of studying of the free vibrations. Dispersion equations for both cases are derived. The numerical solutions of dispersion equations are obtained. Asymptotics of the roots of the dispersion equations for small and large values of frequencies are obtained. Analysis of the solutions is done. The influence of viscosity factors on the behavior of the dispersion curves is established. Comparative analysis of numerical solutions and asymptotics of the roots of dispersion equations are made.
@article{ISU_2014_14_3_a11,
     author = {N. S. Anofrikova and N. V. Sergeeva},
     title = {Investigation of {Harmonic} {Waves} in the {Viscoelastic} {Layer}},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {321--328},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a11/}
}
TY  - JOUR
AU  - N. S. Anofrikova
AU  - N. V. Sergeeva
TI  - Investigation of Harmonic Waves in the Viscoelastic Layer
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 321
EP  - 328
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a11/
LA  - ru
ID  - ISU_2014_14_3_a11
ER  - 
%0 Journal Article
%A N. S. Anofrikova
%A N. V. Sergeeva
%T Investigation of Harmonic Waves in the Viscoelastic Layer
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 321-328
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a11/
%G ru
%F ISU_2014_14_3_a11
N. S. Anofrikova; N. V. Sergeeva. Investigation of Harmonic Waves in the Viscoelastic Layer. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 321-328. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a11/

[1] Meleshko V. V., Bondarenko A. A., Dovgiy S. A., Trofimchuk A. N., Heijst G. J. F. van, “The elastic waveguides: the history and the present-day”, Mathematical methods and physico-mechanical fields, 51:2 (2008), 86–104 (in Russian) | Zbl

[2] Rabotnov Yu. N., Elements of hereditary mechanics of solids, Nauka, M., 1977, 384 pp. (in Russian) | MR

[3] Kozhanova T. V., Kossovich L. Yu., Dispersion equations of Rauleigh–Lamb, Saratov Univ. Press, Saratov, 1990, 21 pp. (in Russian)

[4] Berezin V. L., Kharitonova K. Yu., “Application of the method of mathematical microscope for solving transcendental equations”, Problems of precise mechanics and control, Saratov Univ. Press, Saratov, 2004, 119–122 (in Russian)

[5] Baryshev A. A., Lysunkina Yu. V., “On the application of parameter continuation method to the analysis of dispersion equations in Mathematica”, Mathematics. Mechanics, 15, Saratov Univ. Press, Saratov, 2013, 108–111 (in Russian)

[6] Chervinko O. P., Senchenkov I. K., “Harmonic viscoelastic waves in a layer and in an infinite cylinder”, Applied Mechanics, 22:12 (1986), 31–37 (in Russian) | MR

[7] Tanaka K., Kon-No A., “Harmonic Waves in Lenear Viscoelastic Plate”, Bull. JSME, 23:176 (1980), 185–193 | DOI