Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ISU_2014_14_3_a10, author = {O. V. Shulezhko}, title = {New {Properties} of {Almost} {Nilpotent} {Variety} of {Exponent~2}}, journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics}, pages = {316--320}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a10/} }
TY - JOUR AU - O. V. Shulezhko TI - New Properties of Almost Nilpotent Variety of Exponent~2 JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 316 EP - 320 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a10/ LA - ru ID - ISU_2014_14_3_a10 ER -
O. V. Shulezhko. New Properties of Almost Nilpotent Variety of Exponent~2. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 316-320. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a10/
[1] Mishchenko S., Valenti A., “An almost nilpotent variety of exponent 2”, Israel J. of Math., 199:1 (2014), 241–257 | DOI | MR | Zbl
[2] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Math. Surv. and Monographs, 122, Amer. Math. Soc., Providence, RI, 2005, 352 pp. | DOI | MR | Zbl
[3] Zaitsev M. V., Mishchenko S. P., “Colength of varieties of linear algebras”, Math. Notes, 79:4 (2006), 511–517 | DOI | DOI | MR | Zbl
[4] James G. D., The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer-Verlag, Berlin–New York, 1978 | MR | MR | Zbl