New Properties of Almost Nilpotent Variety of Exponent 2
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 316-320
Cet article a éte moissonné depuis la source Math-Net.Ru
In the presented work we consider numerical characteristics of almost nilpotent variety of exponent 2, which was first constructing in article [1]. The main result of this paper is introduce the exact values of the multiplicities of the irreducible modules appearing in the expansion of the multilinear part of the variety. Meanwhile, we obtain as a consequence the formulas of codimension and colength of the variety of exponent 2.
@article{ISU_2014_14_3_a10,
author = {O. V. Shulezhko},
title = {New {Properties} of {Almost} {Nilpotent} {Variety} of {Exponent~2}},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {316--320},
year = {2014},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a10/}
}
TY - JOUR AU - O. V. Shulezhko TI - New Properties of Almost Nilpotent Variety of Exponent 2 JO - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics PY - 2014 SP - 316 EP - 320 VL - 14 IS - 3 UR - http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a10/ LA - ru ID - ISU_2014_14_3_a10 ER -
O. V. Shulezhko. New Properties of Almost Nilpotent Variety of Exponent 2. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 3, pp. 316-320. http://geodesic.mathdoc.fr/item/ISU_2014_14_3_a10/
[1] Mishchenko S., Valenti A., “An almost nilpotent variety of exponent 2”, Israel J. of Math., 199:1 (2014), 241–257 | DOI | MR | Zbl
[2] Giambruno A., Zaicev M., Polynomial Identities and Asymptotic Methods, Math. Surv. and Monographs, 122, Amer. Math. Soc., Providence, RI, 2005, 352 pp. | DOI | MR | Zbl
[3] Zaitsev M. V., Mishchenko S. P., “Colength of varieties of linear algebras”, Math. Notes, 79:4 (2006), 511–517 | DOI | DOI | MR | Zbl
[4] James G. D., The representation theory of the symmetric groups, Lecture Notes in Math., 682, Springer-Verlag, Berlin–New York, 1978 | MR | MR | Zbl