The new approach to solving the Riemann boundary value problem with infinite index
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 155-165.

Voir la notice de l'article provenant de la source Math-Net.Ru

This research considers Riemann–Hilbert boundary value problem with infinite index where edge condition of problem is established by the real axis. To solve this problem the approach based on the removal of the infinite discontinuity of the argument of boundary condition coefficient is used. The approach is analogous to the one which, in the context of the finite index of the problem in researches by F. D. Gakhov, helps to remove a discontinuity of initial genre of boundary condition coefficient with specially created functions, different from the ones in this research.
@article{ISU_2014_14_2_a5,
     author = {R. B. Salimov and E. N. Karabasheva},
     title = {The new approach to solving the {Riemann} boundary value problem with infinite index},
     journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
     pages = {155--165},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a5/}
}
TY  - JOUR
AU  - R. B. Salimov
AU  - E. N. Karabasheva
TI  - The new approach to solving the Riemann boundary value problem with infinite index
JO  - Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
PY  - 2014
SP  - 155
EP  - 165
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a5/
LA  - ru
ID  - ISU_2014_14_2_a5
ER  - 
%0 Journal Article
%A R. B. Salimov
%A E. N. Karabasheva
%T The new approach to solving the Riemann boundary value problem with infinite index
%J Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
%D 2014
%P 155-165
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a5/
%G ru
%F ISU_2014_14_2_a5
R. B. Salimov; E. N. Karabasheva. The new approach to solving the Riemann boundary value problem with infinite index. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 155-165. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a5/

[1] Muskhelishvili N. I., Singular integral equations, Nauka, Moscow, 1968, 511 pp. | MR | Zbl

[2] Gakhov F. D., Boundary value problems, Nauka, Moscow, 1977, 640 pp. | MR | Zbl

[3] Govorov N. V., Riemann's boundary problem with infinite index, Nauka, Moscow, 1986, 239 pp. | MR | Zbl

[4] Tolochko M. E., “About the solvability of the homogeneous Riemann boundary value problem for the half-plane with infinite index”, Izvestiya Akad. Nauk BSSR. Ser. Fiz.-mat. nauki, 1972, no. 5, 34–41 | Zbl

[5] Sandrygailo I. E., “On Hilbert–Rieman boundary value problem for half-plane with infinite index”, Izvestiya Akad. Nauk BSSR. Ser. Fiz.-Mat. Nauki, no. 6, 872–875 | MR

[6] Monahov V. N., Semenko E. V., “Boundary value problem with infinite index in Hardy spaces”, Dokl. Akad. Nauk SSSR, 291:3 (1986), 544–547 | MR

[7] Alehno A. G., “Sufficient conditions for the solvability of homogeneous Riemann boundary value problem with infinite index”, Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo, 14, Kazan, 2002, 71–77 | MR | Zbl

[8] Garifianov F. N., “About a special case of the Riemann problem”, Trydu seminara po kraevum zadacham, 22, Kazan, 1984, 66–68 | MR | Zbl

[9] Katc B. A., “About Riemann problem with an oscillating coefficient”, Trydu seminara po kraevum zadacham, 14, Kazan, 1977, 110–120 | MR

[10] Salimov R. B., Shabalin P. L., “The regularizing factor method for solving a homogeneous Hilbert problem with an infinite index”, Russian Math., 45:4 (2001), 74–77 | MR | Zbl

[11] Markushevich A. I., The theory of analytic functions, in 2 vol., v. 2, Nauka, Moscow, 1968, 624 pp. | Zbl

[12] Levin B. Ya., Distribution of zeros of entire functions, Gostechizdat, Moscow, 1956, 632 pp.

[13] Salimov R. B., Shabalin P. L., “Solution of the Hilbert Problem with infinite index”, Math. Notes, 73:5 (2003), 680–689 | DOI | DOI | MR | Zbl