Minimal vertex $1$-extensions of palm trees
Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 233-241
Cet article a éte moissonné depuis la source Math-Net.Ru
Minimal vertex $1$-extension of graphs can be regarded as a model of optimal $1$-node fault tolerant implementation of a system. This paper is about of the $1$-vertex extensions of a graphs from a special class named palm trees.This article presents a solution to the problem of finding the minimal vertex $1$-extension of palm trees with two leafs.
@article{ISU_2014_14_2_a11,
author = {D. D. Komarov},
title = {Minimal vertex $1$-extensions of palm trees},
journal = {Izvestiya of Saratov University. Mathematics. Mechanics. Informatics},
pages = {233--241},
year = {2014},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a11/}
}
D. D. Komarov. Minimal vertex $1$-extensions of palm trees. Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, Tome 14 (2014) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/ISU_2014_14_2_a11/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C.25:9 (1976), 875–884 | DOI | MR
[2] Abrosimov M. B., “Complexity of some problems associated with the extension of graphs”, Math. Notes, 88:5 (2010), 619–625 | DOI | DOI | MR | Zbl
[3] Abrosimov M. B., Graph models of fault tolerance, Saratov Univ. Press, Saratov, 2012, 192 pp.
[4] Harary F., Khurum M., “One node fault tolerance for caterpillars and starlike trees”, Internet J. Comput. Math., 56 (1995), 135–143 | DOI | Zbl
[5] Abrosimov M. B., “On the number of additional edges of a minimal vertex 1-extension of a starlike tree”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 12:2 (2012), 103–113